期刊文献+
共找到15,740篇文章
< 1 2 250 >
每页显示 20 50 100
Minor Pressure Differences within the Fontan-Anastomosis in Patients with Total Cavopulmonary Connection by 4D-Flow Magnetic Resonance Imaging
1
作者 Nerejda Shehu Christian Meierhofer +5 位作者 Anja Hennemuth Markus Hüllebrand Pavlo Yevtushenko Peter Ewert Stefan Martinoff Heiko Stern 《Congenital Heart Disease》 SCIE 2023年第4期461-474,共14页
Background: Pressure measurement in total cavopulmonary connection (TCPC) patients is a domain of cardiaccatheterization. 4D velocity encoded cardiovascular magnetic resonance (4D–flow MRI) offers an alternative fora... Background: Pressure measurement in total cavopulmonary connection (TCPC) patients is a domain of cardiaccatheterization. 4D velocity encoded cardiovascular magnetic resonance (4D–flow MRI) offers an alternative forassessment of even minor pressure differences. The scope of this study was to measure even minor pressure differencesin the anastomosis of TCPC patients, who are clinically uncompromised. Methods: Twenty-four patients(median 15 years [8;34]) with TCPC were studied prospectively by 4D-flow MRI. Pressure differences betweensuperior vena cava (SVC) and extracardiac conduit (C) to both right pulmonary artery (RPA) and left pulmonaryartery (LPA) were assessed. Small fluid obstructions as vortices within the anastomosis were detected by flowpathlines from 4D-flow MRI. In two patients pressure differences were calculated also by computational flowdynamics (CFD) as a plausibility check for the order of magnitude. Results: Median values of pressure differencesin the anastomosis between SVC and RPA were 0.63 (0.21–2.1) mmHg, between C and RPA 0.67 (0.3–2.2)mmHg, between SVC and LPA 0.8 (0.3–2.4) mmHg and between C and LPA 0.7 (0.2–1.9) mmHg. Patients withpotential flow obstruction (stents, occluder, vortices) had significantly higher gradients at the anastomosis (p <0.05) than patients without potential obstructions, although the absolute values were small. CFD- and measurement-based pressure difference showed good agreement. Conclusion: 4D-flow MRI is able to detect minor pressuredifferences within the Fontan circuit even in patients with apparently satisfactory TCPC. Slightly higherpressure differences are due to the presence of small flow obstruction. 展开更多
关键词 4D-flow MRI pressure differences TCPC FONTAN
下载PDF
Differential pressure difference based altitude control of a stratospheric satellite
2
作者 陈丽 WANG Xiaoliang 《High Technology Letters》 EI CAS 2024年第1期1-12,共12页
An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to bal... An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to balance the platform gravity.The two-way blower inflates and deflates the ballonet to regulate the buoyancy.Altitude adjustment is achieved by tracking the differential pressure difference(DPD),and a threshold switching strategy is used to achieve blower flow control.The vertical acceleration regulation ability is decided not only by the blower flow rate,but also by the designed margin of pressure difference(MPD).Pressure difference is a slow-varying variable compared with altitude,and it is adopted as the control variable.The response speed of the actuator to disturbance can be delayed,and the overshoot caused by the large inertia of the platform is inhibited.This method can maintain a high tracking accuracy and reduce the complexity of model calculation,thus improving the robustness of controller design. 展开更多
关键词 stratospheric satellite(StratoSat) differential pressure difference(DPD) altitude adjustment threshold switching strategy margin of pressure difference(MPD)
下载PDF
Evaluation of frictional pressure drop correlations for air-water and air-oil two-phase flow in pipeline-riser system
3
作者 Nai-Liang Li Bin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1305-1319,共15页
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ... Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop. 展开更多
关键词 Frictional pressure drop Pipeline-riser Gas-liquid two-phase flow Severe slugging CORRELATION
下载PDF
Pressure transient characteristics of non-uniform conductivity fractured wells in viscoelasticity polymer flooding based on oil-water two-phase flow
4
作者 Yang Wang Jia Zhang +2 位作者 Shi-Long Yang Ze-Xuan Xu Shi-Qing Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期343-351,共9页
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni... Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves. 展开更多
关键词 Polymer flooding Non-Newtonian fluid Non-uniform fracture conductivity Two-phase flow pressure transient analysis
下载PDF
Analysis of the Flow Field and Impact Force in High-Pressure Water Descaling
5
作者 Yue Cui Liyuan Wang +2 位作者 Jian Wu Haisheng Liu Di Wu 《Fluid Dynamics & Materials Processing》 EI 2024年第1期165-177,共13页
This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by... This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by means of a fluid–structure interaction(FSI)method by which the descaling effect produced by rolling coils with different section sizes is examined.Assuming a flat fan-shaped nozzle at the entrance of the R1R2 roughing mill,the outflow field characteristics and the velocity distribution curve on the strike line(at a target distance of 30–120 mm)are determined.It is found that the velocity in the center region of the water jet with different target distances is higher than that in the boundary region.As the target distance increases,the velocity of the water jet in the central region decreases.Through comparison with experimental results,it is shown that the simulation model can accurately predict the impact position of the high-pressure water on the impact plate,thereby providing a computational scheme that can be used to optimize the nozzle space layout and improve the slabs’descent effect for different rolling specifications. 展开更多
关键词 High pressure water descaling flow field analysis FSI target distance strike range
下载PDF
A High Order Accurate Bound-Preserving Compact Finite Difference Scheme for Two-Dimensional Incompressible Flow
6
作者 Hao Li Xiangxiong Zhang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期113-141,共29页
For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple boun... For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple bound-preserving limiter in Li et al.(SIAM J Numer Anal 56:3308–3345,2018)can enforce the strict bounds of the vorticity,if the velocity field satisfies a discrete divergence free constraint.For reducing oscillations,a modified TVB limiter adapted from Cockburn and Shu(SIAM J Numer Anal 31:607–627,1994)is constructed without affecting the bound-preserving property.This bound-preserving finite difference method can be used for any passive convection equation with a divergence free velocity field. 展开更多
关键词 Finite difference MONOTONICITY Bound-preserving Discrete maximum principle Passive convection Incompressible flow Total variation bounded limiter
下载PDF
Prediction of pressure gradient and hold-up in horizontal liquid-liquid pipe flow
7
作者 Syed Amjad Ahmed Bibin John 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3766-3782,共17页
This paper aims to propose correlations to predict pressure gradient,friction factor and fluid phase hold-up in liquid-liquid horizontal pipe flow.To develop the correlations,experiments are conducted using high visco... This paper aims to propose correlations to predict pressure gradient,friction factor and fluid phase hold-up in liquid-liquid horizontal pipe flow.To develop the correlations,experiments are conducted using high viscous oils(202 and 630 mPa⋅s)in a steel pipe of length 11.25 m and length-to-diameter ratio of 708.In addition,the experimental data from the literature comprising wide range of flow and fluid properties is analyzed.For the analysis,the liquid-liquid pipe flow data is categorized into two as:stratified and dispersed.The existing friction factor correlations are modified to incorporate the effects of viscosity of the oil phase,interfacial curvature(contact/wetting angle-in lieu of material of the pipe)and fluid phase fraction.In the two-fluid model of stratified flow,the wall stress and interfacial stress correlations are substituted with superficial velocities of fluids and superficial Reynolds numbers of fluid phases replacing fluid phase velocities and fluid Reynolds numbers.Similarly,for dispersed flow,an effective Reynolds number is described as the sum of superficial Reynolds number of oil and water phases.Substituting the generally employed mean or mixture Reynolds number with the effective Reynolds number into the existing single-phase turbulent flow friction factor correlation,an effective friction factor for oil-water flow is proposed.Employing the proposed correlations,the pressure gradient across the oil-water flow and hold-up volume fraction are predicted with significant reduction in error compared with that of conventionally employed correlations.The average error and standard deviation values of−7.06%,20.72%and 0.31%,18.79%are found for stratified flow and dispersed flow respectively. 展开更多
关键词 oil-water flow two-fluid model pressure gradient stratified flow dispersed flow
下载PDF
Numerical Simulation of a Two-Phase Flow with Low Permeability anda Start-Up Pressure Gradient 被引量:1
8
作者 Xuanyu Dong Jingyao Yang 《Fluid Dynamics & Materials Processing》 EI 2023年第1期175-185,共11页
A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related n... A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related numerical solutions are obtained using a finite difference method.The correctness of the method is demonstrated using a two-dimensional inhomogeneous low permeability example.Then,the differences in the cumulative oil and water production are investigated for different starting water saturations.It is shown that when the initial water saturation grows,the water content of the block continues to rise and the cumulative oil production gradually decreases. 展开更多
关键词 Low-permeability reservoirs two-phase flow water cut start-up pressure gradient non-darcy flow
下载PDF
Control of Nozzle Flow Using Rectangular Ribs at Sonic and Supersonic Mach Numbers
9
作者 Vigneshvaran Sethuraman Parvathy Rajendran +2 位作者 Sher Afghan Khan Abdul Aabid Muneer Baig 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1847-1866,共20页
This study deals with base pressure management in a duct for various values of the Mach number(M),namely,Mach number corresponding to sonic and four supersonic conditions.In addition to the Mach number,the nozzle pres... This study deals with base pressure management in a duct for various values of the Mach number(M),namely,Mach number corresponding to sonic and four supersonic conditions.In addition to the Mach number,the nozzle pressure ratio(NPR),the area ratio,the rib dimension,and the duct length are influential parameters.The following specific values are examined at M=1,1.36,1.64,and 2,and NPRs between 1.5 and 10.The base pressure is determined by positioning ribs of varying heights at predetermined intervals throughout the length of the square duct.When the level of expansion is varied,it is seen that the base pressure initially drops for overexpanded flows and increases for under-expanded flows.When ribs are present,the flow field in the duct and pressure inside the duct fluctuate as the base pressure rises.Under-expanded flows can achieve a base pressure value that is suitably high without experiencing excessive changes in the duct flow in terms of static pressure if a rib height around 10%of the duct height close to the nozzle exit is considered.Rectangular rib passive control does not negatively affect the duct’s flow field. 展开更多
关键词 Base pressure internal flows RIBS suddenly expanded flow wall pressure
下载PDF
A New Device for Gas-Liquid Flow Measurements Relying on Forced Annular Flow
10
作者 Tiantian Yu Youping Lv +5 位作者 Hao Zhong Ming Liu Pingyuan Gai Zeju Jiang Peng Zhang Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1759-1772,共14页
A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw... A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow. 展开更多
关键词 Gas-liquid flow measurement blocking flowmeter measurement model pressure fluctuations numerical simulation experimental control
下载PDF
Numerical simulation of flow field characteristics and the improvement of pressure oscillation of rotating detonation engine
11
作者 Xin-pei Han Quan Zheng +6 位作者 Bao-xing Li Qiang Xiao Han Xu Fang Wang Hao-long Meng Wen-kang Feng Chun-sheng Weng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期191-202,共12页
Due to the inherent working mode of rotating detonation engine(RDE),the detonation flow field has the characteristics of pressure oscillation and axial kinetic energy loss,which makes it difficult to design nozzle and... Due to the inherent working mode of rotating detonation engine(RDE),the detonation flow field has the characteristics of pressure oscillation and axial kinetic energy loss,which makes it difficult to design nozzle and improve propulsion performance.Therefore,in order to improve the characteristics of detonation flow field,the three-dimensional numerical simulation of annular chamber and hollow chamber is carried out with premixed hydrogen/air as fuel in this paper,and then tries to combine the two chambers to weaken the oscillation characteristics of detonation flow field through the interaction of detonation flow field,which is a new method to regulate the detonation flow field.The results show that there are four states of velocity vectors at the outlet of annular chamber and hollow chamber,which makes RDE be affected by rolling moment and results in the loss of axial kinetic energy.In the external flow field of combined chamber,the phenomenon of cyclic reflection of expansion wave and compression wave on the free boundary is observed,which results in Mach disk structure.Moreover,the pressure monitoring points are set at the external flow field.The pressure signal shows that the high-frequency pressure oscillation at the external flow field of the combined chamber has been greatly weakened.Compared to the annular chamber,the relative standard deviation(RSD) has been reduced from 14.6% to5.6%.The results thus demonstrate that this method is feasible to adjust the pressure oscillation characteristics of the detonation flow field,and is of great significance to promote the potential of RDE and nozzle design. 展开更多
关键词 Detonation flow field Combined chamber pressure oscillation Velocity vector
下载PDF
Impact pressure of debris flow on beam dam
12
作者 WANG Dong-wei YOU Yong +2 位作者 LIU Jin-feng SUN Hao WANG Zhuang 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2822-2834,共13页
The use of open-type check dams in mountainous areas has become common practice in order to mitigate the effects of debris flow and extend the service life of engineering structures.The beam dam,a common debris flow c... The use of open-type check dams in mountainous areas has become common practice in order to mitigate the effects of debris flow and extend the service life of engineering structures.The beam dam,a common debris flow control system,has received less attention in research on the impact process of debris flow and check dams compared to solid check dams.Additionally,the estimation of impact pressure in debris flow primarily considers debris flow characteristics,without taking into account the influence of geometric characteristics of the transmission structure.To better understand the impact process of debris flow on beam dams,a series of small-scale debris flow impact tests were conducted in a model flume.Key parameters,including velocity,depth,and impact pressure,were measured.The results show that the maximum impact pressure of debris flow is affected by both the characteristics of the debris flow and the relative opening size of the beam dam.Due to flow and edge occlusion in the middle of the beam dam,the discharge of debris flow is enhanced,resulting in a longer impact process and higher maximum impact pressure.Based on these findings,a calculation model of the maximum impact pressure of debris flow at the midpoint of the middle beam is proposed,which can be used to estimate the impact of debris flow on the discharge part of the beam dam. 展开更多
关键词 Debris flow Beam dam Impact pressure Relative opening size Calculation model
下载PDF
A Novel Model for the Prediction of Liquid Film Thickness Distribution in Pipe Gas-Liquid Flows
13
作者 Yubo Wang Yanan Yu +1 位作者 Qiming Wang Anxun Liu 《Fluid Dynamics & Materials Processing》 EI 2024年第9期1993-2006,共14页
A model is proposed for liquid film profile prediction in gas-liquid two-phase flow,which is able to provide the film thickness along the circumferential direction and the pressure gradient in the flow direction.A two... A model is proposed for liquid film profile prediction in gas-liquid two-phase flow,which is able to provide the film thickness along the circumferential direction and the pressure gradient in the flow direction.A two-fluid model is used to calculate both gas and liquid phases’flow characteristics.The secondary flow occurring in the gas phase is taken into account and a sailing boat mechanism is introduced.Moreover,energy conservation is applied for obtaining the liquid film thickness distribution along the circumference.Liquid film thickness distribution is calculated accordingly for different cases;its values are compared with other models and available experimental data.As a result,the newly proposed model is tested and good performances are demonstrated.The liquid film thickness distribution in small pipes and inclined pipes is also studied,and regime transition is revealed by liquid film profile evolution.The observed inflection point demonstrates that the liquid film thickness decreases steeply along the circumference,when the circle angle ranges between 30°and 50°for gas-liquid stratified flow with small superficial velocities. 展开更多
关键词 Film thickness secondary flow void fraction pressure gradient regime transition
下载PDF
Unveiling the silent link:Normal-tension glaucoma's enigmatic bond with cardiac blood flow
14
作者 Prasanna Venkatesh Ramesh Arvind Kumar Morya +5 位作者 Ajanya K Aradhya Pavithra Pannerselvam Sai Thaejesvi Gopalakrishnan Shruthy Vaishali Ramesh Aji Kunnath Devadas Navaneeth Krishna 《World Journal of Cardiology》 2024年第1期10-15,共6页
This comprehensive review embarks on a captivating journey into the complex relationship between cardiology and normal-tension glaucoma(NTG),a condition that continues to baffle clinicians and researchers alike.NTG,ch... This comprehensive review embarks on a captivating journey into the complex relationship between cardiology and normal-tension glaucoma(NTG),a condition that continues to baffle clinicians and researchers alike.NTG,characterized by optic nerve damage and visual field loss despite normal intraocular pressure,has long puzzled clinicians.One emerging perspective suggests that alterations in ocular blood flow,particularly within the optic nerve head,may play a pivotal role in its pathogenesis.While NTG shares commonalities with its high-tension counterpart,its unique pathogenesis and potential ties to cardiovascular health make it a fascinating subject of exploration.It navigates through the complex web of vascular dysregulation,blood pressure and perfusion pressure,neurovascular coupling,and oxidative stress,seeking to uncover the hidden threads that tie the heart and eyes together in NTG.This review explores into the intricate mechanisms connecting cardiovascular factors to NTG,shedding light on how cardiac dynamics can influence ocular health,particularly in cases where intraocular pressure remains within the normal range.NTG's enigmatic nature,often characterized by seemingly contradictory risk factors and clinical profiles,underscores the need for a holistic approach to patient care.Drawing parallels to cardiac health,we examine into the shared vascular terrain connecting the heart and the eyes.Cardiovascular factors,including systemic blood flow,endothelial dysfunction,and microcirculatory anomalies,may exert a profound influence on ocular perfusion,impacting the delicate balance within the optic nerve head.By elucidating the subtle clues and potential associations between cardiology and NTG,this review invites clinicians to consider a broader perspective in their evaluation and management of this elusive condition.As the understanding of these connections evolves,so too may the prospects for early diagnosis and tailored interventions,ultimately enhancing the quality of life for those living with NTG. 展开更多
关键词 Normal tension glaucoma Vascular dysregulation Ocular blood flow Blood pressure Perfusion pressure Oxidative stress
下载PDF
Flow and sound fields of scaled high-speed trains with different coach numbers running in long tunnel
15
作者 Qiliang Li Yuqing Sun +1 位作者 Menghan Ouyang Zhigang Yang 《Railway Engineering Science》 EI 2024年第3期401-420,共20页
Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aer... Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number. 展开更多
关键词 flow and sound fields Scaled high-speed trains Different coach numbers Long tunnel Proper orthogonal decomposition
下载PDF
基于Flowmaster的小流量供水设备调节性能模拟
16
作者 陈佳中 王彤 +5 位作者 尚渝钧 曹仙桃 尚鑫宇 宋佳奇 王文成 郭小宝 《水电能源科学》 北大核心 2024年第7期151-154,141,共5页
现有的二次供水研究对小流量工况关注较少,小流量工况下主泵低效运行、频繁启停问题正成为制约城市供水“最后一公里”低能耗、高质量发展的痛点。为此,建立Flowmaster仿真模型对“工频辅泵+气压罐”小流量供水模式进行模拟,探究了需求... 现有的二次供水研究对小流量工况关注较少,小流量工况下主泵低效运行、频繁启停问题正成为制约城市供水“最后一公里”低能耗、高质量发展的痛点。为此,建立Flowmaster仿真模型对“工频辅泵+气压罐”小流量供水模式进行模拟,探究了需求侧不同小流量下气压罐的调节性能。结果表明,“工频辅泵+气压罐”可很好减少水泵启停次数,保持系统稳定。进一步研究了气压罐预充压力对调节性能的影响,阐明了预充气泄漏带来的负面影响,并提出相关工程建议。 展开更多
关键词 flowmaster 小流量 工频辅泵+气压罐 调节性能 二次供水
下载PDF
Flow pattern and pressure drop of gas-liquid two-phase swirl flow in a horizontal pipe 被引量:5
17
作者 RAO Yong-chao DING Bo-yang +2 位作者 WANG Shu-li WANG Zi-wen ZHOU Shi-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2528-2542,共15页
The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value ... The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value for promoting gas hydrate formation and ensuring the flow safe of natural gas hydrate slurry.The experimental section was made of plexiglass pipe and the experimental medium was air and water.The flow pattern of the gas-liquid two-phase swirl flow in the horizontal pipe was divided,according to a high-definition camera and the overall characteristics of the gas-liquid interface.The flow pattern map of the gas-liquid two-phase swirl flow in a horizontal pipe was studied.The influence of the flow velocity and vane parameters on pressure drop was investigated.Two types of gas-liquid two-phase swirl flow pressure drop models was established.The homogeneous-phase and split-phase pressure drop models have good prediction on swirl bubble flow,swirl dispersed flow,swirl annular flow and swirl stratified flow,and the predictive error band is not more than 20%. 展开更多
关键词 swirl flow two-phase flow flow pattern swirl number pressure drop
下载PDF
基于Flowmaster的发动机滑油供油系统流量压力换热特性建模与仿真
18
作者 冷子昊 程荣辉 +2 位作者 郁丽 苏壮 李国权 《机械工程师》 2024年第2期112-116,共5页
为了分析滑油从滑油泵组流经燃滑油散热器、喷嘴至轴承腔内的流动换热特性,基于Flowmaster流体系统仿真平台,以发动机滑油供油系统为研究对象,通过各支点喷嘴模型建立及仿真计算,验证喷嘴设计符合性。根据燃滑油散热器结构特点,计算流... 为了分析滑油从滑油泵组流经燃滑油散热器、喷嘴至轴承腔内的流动换热特性,基于Flowmaster流体系统仿真平台,以发动机滑油供油系统为研究对象,通过各支点喷嘴模型建立及仿真计算,验证喷嘴设计符合性。根据燃滑油散热器结构特点,计算流阻和换热特性,建立仿真计算模型,验证散热器流阻特性及换热性能;建立滑油供油系统模型,仿真计算轴承腔、附件机匣、转接齿轮箱等处供油流量、供油压力及供油温度,分析评估系统流量压力换热特性,支撑滑油系统正向设计。 展开更多
关键词 滑油供油系统 燃滑油散热器 流量 压力 换热 flowmaster
下载PDF
Experimental Analysis of the Flow Characteristics of an Adjustable Critical-Flow Venturi Nozzle
19
作者 Chun Ye Jingjing Gao +4 位作者 Zhihui Wang Weibiao Zheng Yibei Wang Xingkai Zhang Ming Liu 《Fluid Dynamics & Materials Processing》 EI 2023年第3期754-765,共12页
The response of an adjustable critical-flow Venturi nozzle is investigated through a set indoor experiments aimed to determine the related critical flow rate,critical pressure ratio,and discharge coefficient.The effec... The response of an adjustable critical-flow Venturi nozzle is investigated through a set indoor experiments aimed to determine the related critical flow rate,critical pressure ratio,and discharge coefficient.The effect of a variation in the cone displacement and liquid content on the critical flow characteristics is examined in detail and it is shown that the former can be used to effectively adjust the critical flow rate.The critical pressure ratio of the considered nozzle is above 0.85,and the critical flow control deviation of the gas flow is within±3%.Liquid flow can reduce the gas critical mass flow rate accordingly,especially for the cases with larger liquid volume and lower inlet pressure.The set of results and conclusions provided are intended to support the optimization of steam injection techniques in the context of heavy oil recovery processes. 展开更多
关键词 Adjustable critical flow venturi nozzle critical pressure ratio critical mass flow rate gas-liquid two-phase critical flow
下载PDF
Flow Pattern and Pressure Fluctuation of Severe Slugging in Pipeline-riser System 被引量:13
20
作者 罗小明 何利民 马华伟 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第1期26-32,共7页
During the exploitation of offshore oil and gas,it is easy to form severe slugging which can cause great harm in the riser connecting wellheads and offshore platform preprocessing system.The flow pattern and pressure ... During the exploitation of offshore oil and gas,it is easy to form severe slugging which can cause great harm in the riser connecting wellheads and offshore platform preprocessing system.The flow pattern and pressure fluctuation of severe slugging were studied in an experimental simulation system with inner diameter of 0.051 m.It is found that severe slugging can be divided into three severe slugging regimes:regime I at low gas and liquid flow rates with large pressure fluctuation,intermittent flow of liquid and gas in the riser,and apparent cutoff of liquid phase,regime II at high gas flow rate with non-periodic fluctuation and discontinuous liquid outflow and no gas cutoff,regime III at high liquid flow rate with degenerative pressure fluctuation in form of relatively stable bubbly or plug flow.The results indicate that severe slugging still occurs when the declination angle of pipeline is 0,and there are mainly two kinds of regimes:regime I and regime II.As the angle increases,the formation ranges of regime I and regime III increase slightly while that of regime II is not affected.With the increase of gas superficial velocity and liquid superficial velocity,the pressure fluctuation at the bottom of riser increases initially and then decreases.The maximum value of pressure fluctuation occurs at the transition boundary of regimes I and II. 展开更多
关键词 multiphase flow severe slugging pipeline-riser system flow regime pressure fluctuation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部