In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed an...In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow.展开更多
The steel slag at Baosteel mainly comes from basic oxygen furnaces (BOF), electric arc furnaces (EAF), continuous casting and hot metal pretreatment. The output of the steel slag at Baosteel was 4.43 Mt in 2010. T...The steel slag at Baosteel mainly comes from basic oxygen furnaces (BOF), electric arc furnaces (EAF), continuous casting and hot metal pretreatment. The output of the steel slag at Baosteel was 4.43 Mt in 2010. The steel slag was utilized both within the company and across the society, and the utilization rate within the company achieved was 16%. This study describes the current status and existing problems in those technologies of treating and using steel slag ,in the aspects of primary treatment, secondary treatment and advanced treatment, and it points out the development' s direction.展开更多
The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated base...The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated based on the construction thought of the standard Menger Sponge to model the 3D nonlinear coal pore structures.Then a correlation model between the permeability of fractal porous medium and its pore-size-distribution characteristics was derived using the parallel and serial modes and verified by Lattice Boltzmann Method(LBM).Based on the coupled method,porosity(ф),fractal dimension of pore structure(Db),pore size range(rmin,rmax) and other parameters were systematically analyzed for their influences on the permeability(ф) of fractal porous medium.The results indicate that:① the channels connected by pores with the maximum size(rmax) dominate the permeability,approximating in the quadratic law;② the greater the ratio of r max and r min is,the higher is;③ the relationship between D b and follows a negative power law model,and breaks into two segments at the position where Db ≌2.5.Based on the results above,a predicting model of fractal porous medium permeability was proposed,formulated as k=cfrnmax,where C and n(approximately equal to 2) are constants and f is an expression only containing parameters of fractal pore structure.In addition,the equivalence of the new proposed model for porous medium and the Kozeny-Carman model k=Crn was verified at Db =2.0.展开更多
In this paper, the hydrodynamic characteristics of water flow in Chaohu Lake are studied by using the finite volume coastal ocean model(FVCOM), which is verified by the observed data. The typical flow field and the ...In this paper, the hydrodynamic characteristics of water flow in Chaohu Lake are studied by using the finite volume coastal ocean model(FVCOM), which is verified by the observed data. The typical flow field and the 3-D flow structure are obtained for the lake. The flow fields under extreme conditions are analyzed to provide a prospective knowledge of the water exchange and the transport process.The influence of the wind on the flow is determined by the cross spectrum method. The results show that the wind-driven flow dominates most area of the lake. Under prevailing winds in summer and winter, the water flows towards the downwind side at the upper layer while towards the upwind side at the lower layer in most area except that around the Chaohu Sluice. The extreme wind speed is not favorable for the water exchange while the sluice's releasing water accelerates the process. The water velocity in the lake is closely related with the wind speed.展开更多
基金The project supported in part by the National Natural Science Foundation of China under Grant No. 10671124 and the Program for New Century Excellent Talents in University of China under Grant No. NCET-05-0390 Acknowledgments The author would like to thank the Center of Mathematical Sciences at Zhejiang University for the great support and hospitality and the referee for pertinent comments and valuable suggestions.
文摘In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow.
文摘The steel slag at Baosteel mainly comes from basic oxygen furnaces (BOF), electric arc furnaces (EAF), continuous casting and hot metal pretreatment. The output of the steel slag at Baosteel was 4.43 Mt in 2010. The steel slag was utilized both within the company and across the society, and the utilization rate within the company achieved was 16%. This study describes the current status and existing problems in those technologies of treating and using steel slag ,in the aspects of primary treatment, secondary treatment and advanced treatment, and it points out the development' s direction.
基金supported by National Natural Science Foundation of China(Grant Nos.41102093&41072153)CBM Union Foundation of Shanxi Province (Grant No.2012012002)Doctoral Scientific Foundation of Henan Polytechnic University(Grant No.648706)
文摘The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated based on the construction thought of the standard Menger Sponge to model the 3D nonlinear coal pore structures.Then a correlation model between the permeability of fractal porous medium and its pore-size-distribution characteristics was derived using the parallel and serial modes and verified by Lattice Boltzmann Method(LBM).Based on the coupled method,porosity(ф),fractal dimension of pore structure(Db),pore size range(rmin,rmax) and other parameters were systematically analyzed for their influences on the permeability(ф) of fractal porous medium.The results indicate that:① the channels connected by pores with the maximum size(rmax) dominate the permeability,approximating in the quadratic law;② the greater the ratio of r max and r min is,the higher is;③ the relationship between D b and follows a negative power law model,and breaks into two segments at the position where Db ≌2.5.Based on the results above,a predicting model of fractal porous medium permeability was proposed,formulated as k=cfrnmax,where C and n(approximately equal to 2) are constants and f is an expression only containing parameters of fractal pore structure.In addition,the equivalence of the new proposed model for porous medium and the Kozeny-Carman model k=Crn was verified at Db =2.0.
基金supported by the Special Foundation (Class D) of "Hundred Talents Program" of Chinese Academy of Sciences
文摘In this paper, the hydrodynamic characteristics of water flow in Chaohu Lake are studied by using the finite volume coastal ocean model(FVCOM), which is verified by the observed data. The typical flow field and the 3-D flow structure are obtained for the lake. The flow fields under extreme conditions are analyzed to provide a prospective knowledge of the water exchange and the transport process.The influence of the wind on the flow is determined by the cross spectrum method. The results show that the wind-driven flow dominates most area of the lake. Under prevailing winds in summer and winter, the water flows towards the downwind side at the upper layer while towards the upwind side at the lower layer in most area except that around the Chaohu Sluice. The extreme wind speed is not favorable for the water exchange while the sluice's releasing water accelerates the process. The water velocity in the lake is closely related with the wind speed.