Dense gas-solid flow with solid volume fraction greater than 10% and at moderate Reynolds number is important in many industrial facilities such as fluidized beds. In this work, the Euler-Lagrange approach in combinat...Dense gas-solid flow with solid volume fraction greater than 10% and at moderate Reynolds number is important in many industrial facilities such as fluidized beds. In this work, the Euler-Lagrange approach in combination with a deterministic collision model is applied to a laboratory-scale fluidized bed. The fluid-particle interaction is studied using a new procedure called the offset method, which results in several numbers of spatial displacements of the fluid grid. The proposed method is highly precise in determining porosity and momentum transfer, thus improving simutation accuracy. A validation study was carried out to assess the results using this in-house CFD/DEM code against 5-s operation of a Plex- iglas spouted-fluidized bed, showing good qualitative correlation of solid distribution in the bed and acceptable quantitative agreement of pressure drops at different positions in the bed. In view of high computing cost, special emphasis is placed on effective program design, such as application of advanced detection algorithm for particle-particle/wall collisions, the multi-grid method and parallel calculation. In this context, the influence of increasing the processor number, up to 36, on calculation efficiency was investigated.展开更多
The use of X-ray microtomographic (XMT) methods in analysing particulate systems has expanded rapidly in recent years with the availability of affordable desk-top apparatus. This review presents a summary of the maj...The use of X-ray microtomographic (XMT) methods in analysing particulate systems has expanded rapidly in recent years with the availability of affordable desk-top apparatus. This review presents a summary of the major applications in which computer simulations are explicitly coupled with XMT in the area of granular and porous materials. We envisage two main ways of establishing the coupling between both techniques, based on the transference or exchange of information by using physical or geometrical parameters (i.e. a parametric link through fitting to a process model) or through the direct use of3D XMT digital images (i.e. comparing image pixels and features directly). Examples of coupled applications are shown for the study of transport properties of rocks, particle packing, mechanical loading and sintering. Often, the link between XMT and computer simulations is based on visual comparisons and we conclude that the use of quantitative parameters such as the number of interparticle contacts, force networks or granule shape to link both techniques is still underrepresented in the literature. Strategies to provide a more robust and quantitative approach to optimise the information obtained from such tomography analyses are proposed. 2010 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.展开更多
文摘Dense gas-solid flow with solid volume fraction greater than 10% and at moderate Reynolds number is important in many industrial facilities such as fluidized beds. In this work, the Euler-Lagrange approach in combination with a deterministic collision model is applied to a laboratory-scale fluidized bed. The fluid-particle interaction is studied using a new procedure called the offset method, which results in several numbers of spatial displacements of the fluid grid. The proposed method is highly precise in determining porosity and momentum transfer, thus improving simutation accuracy. A validation study was carried out to assess the results using this in-house CFD/DEM code against 5-s operation of a Plex- iglas spouted-fluidized bed, showing good qualitative correlation of solid distribution in the bed and acceptable quantitative agreement of pressure drops at different positions in the bed. In view of high computing cost, special emphasis is placed on effective program design, such as application of advanced detection algorithm for particle-particle/wall collisions, the multi-grid method and parallel calculation. In this context, the influence of increasing the processor number, up to 36, on calculation efficiency was investigated.
基金support of this work (Grant EP/D031257/1)and the contribution of illustrations from Prof. U. Tuzun (University of Surrey), Prof. C. Lin(University of Utah) and Dr C. Selomulya (Monash University)
文摘The use of X-ray microtomographic (XMT) methods in analysing particulate systems has expanded rapidly in recent years with the availability of affordable desk-top apparatus. This review presents a summary of the major applications in which computer simulations are explicitly coupled with XMT in the area of granular and porous materials. We envisage two main ways of establishing the coupling between both techniques, based on the transference or exchange of information by using physical or geometrical parameters (i.e. a parametric link through fitting to a process model) or through the direct use of3D XMT digital images (i.e. comparing image pixels and features directly). Examples of coupled applications are shown for the study of transport properties of rocks, particle packing, mechanical loading and sintering. Often, the link between XMT and computer simulations is based on visual comparisons and we conclude that the use of quantitative parameters such as the number of interparticle contacts, force networks or granule shape to link both techniques is still underrepresented in the literature. Strategies to provide a more robust and quantitative approach to optimise the information obtained from such tomography analyses are proposed. 2010 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.