期刊文献+
共找到936篇文章
< 1 2 47 >
每页显示 20 50 100
Parameters Optimization of the Heating Furnace Control Systems Based on BP Neural Network Improved by Genetic Algorithm 被引量:4
1
作者 Qiong Wang Xiaokan Wang 《Journal on Internet of Things》 2020年第2期75-80,共6页
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ... The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace. 展开更多
关键词 Genetic algorithm parameter optimization PID control bp neural network heating furnace
下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
2
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network Genetic algorithms Back propagation model (bp model) OPTIMIZATION
下载PDF
基于BP神经网络算法的异步电机故障诊断系统研究 被引量:1
3
作者 孙吴松 《荆楚理工学院学报》 2024年第2期1-10,共10页
为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子... 为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子与学习率,并通过遗传算法来优化BP网络的初始权值,对故障测试样本进行仿真测试。结果表明,GA-BP网络模型比MF-BP和AG-BP的MSE值更低,仅为0.009163,优化后的诊断预测结果与目标值几乎没有差别。基于遗传算法改进的故障诊断系统模型能够满足异步电动机故障诊断的应用需求。 展开更多
关键词 故障诊断 MATLAB bp神经网络 遗传算法 网络优化
下载PDF
车轴滚齿加工工艺参数GA-BP模型NSGA-Ⅱ优化
4
作者 班希翼 李强 +1 位作者 贺小龙 余建勇 《机械设计与制造》 北大核心 2024年第10期145-148,156,共5页
研究了高速条件下的滚齿工艺参数设置与优化方面的工作,采用新的非支配遗传算法NSGA-Ⅱ设计了相应的优化数学模型,优化达到最低能耗以及最长的刀具使用期限,再以遗传反向传播算法(GABP)神经网络为目标设置预测模型并建立适应度函数,完... 研究了高速条件下的滚齿工艺参数设置与优化方面的工作,采用新的非支配遗传算法NSGA-Ⅱ设计了相应的优化数学模型,优化达到最低能耗以及最长的刀具使用期限,再以遗传反向传播算法(GABP)神经网络为目标设置预测模型并建立适应度函数,完成迭代优化后获得匹配滚齿工艺的Pareto最优条件。研究结果表明:这里预测模型经过5次循环计算后,均方差为10-5,得到0.000425的最优值,推断上述网络满足良好的稳定性。刀具寿命误差相对后者降低16%,降低了36%的能量损耗,发现GABP算法具备更优收敛能力。Pareto解集获得了比相近加工样本集更优的性能,因此采用多目标优化模型可以确保加工能耗和刀具使用寿命同时达到最佳状态。该研究对提高的滚齿加工工艺参数以及提高机加工效率具有很好的实际应用价值。 展开更多
关键词 滚齿 工艺参数 bp神经网络 遗传算法 多目标优化
下载PDF
采用改进BP-PID控制的机器人避障仿真研究
5
作者 吴静松 耿振铎 《中国工程机械学报》 北大核心 2024年第4期437-441,共5页
针对移动机器人避障过程中行驶路径长、寻路速度慢等问题,提出了一种改进反向传播-比例-积分-微分(BP-PID)控制器,并对移动机器人避障效果进行仿真验证。利用移动机器人在二维坐标系的避障简图,得出了移动机器人运动方程式。引用比例-积... 针对移动机器人避障过程中行驶路径长、寻路速度慢等问题,提出了一种改进反向传播-比例-积分-微分(BP-PID)控制器,并对移动机器人避障效果进行仿真验证。利用移动机器人在二维坐标系的避障简图,得出了移动机器人运动方程式。引用比例-积分-微分(PID)控制器和3层BP神经网络结构,利用BP神经网络的学习能力调整PID控制器参数。引用粒子群算法进行改进,通过改进粒子群算法在线优化BP-PID控制器,确保移动机器人BP-PID控制器收敛于全局最优值,从而使移动机器人避障效果更好。在不同环境中,采用Matlab软件对移动机器人避障效果进行仿真,比较改进前和改进后的移动机器人避障效果。结果显示:在不同环境中,改进前和改进后的BP-PID控制器均能使移动机器人安全地躲避障碍物;但是采用改进的粒子群算法优化BP-PID控制器,可以使移动机器人运动路径更短,迭代次数更少,搜索时间更短。采用改进BP-PID控制器,能够提高移动机器人避障过程中寻路速度,缩短行驶路径,效果更好。 展开更多
关键词 移动机器人 bp神经网络 PID控制器 改进粒子群算法 避障 仿真
下载PDF
基于MIV-PSO-BPNN的掘进面风温预测方法
6
作者 程磊 李正健 +2 位作者 贺智勇 史浩镕 王鑫 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第6期11-17,共7页
目的为防治矿井热害,解决矿井掘进面风温预测问题,方法提出一种MIV算法优化的PSO-BPNN预测模型。通过利用MIV算法确定模型的输入变量,以BP网络建模,使用粒子群优化算法结合BP神经网络实现掘进工作面风流温度的预测,得到预测结果并与BPN... 目的为防治矿井热害,解决矿井掘进面风温预测问题,方法提出一种MIV算法优化的PSO-BPNN预测模型。通过利用MIV算法确定模型的输入变量,以BP网络建模,使用粒子群优化算法结合BP神经网络实现掘进工作面风流温度的预测,得到预测结果并与BPNN模型、PSO-BPNN模型、SVR模型相比较。结果结果表明:MIV-PSO-BPNN预测模型的相对误差为-0.47%~1.81%,分别优于PSO-BPNN、BPNN、SVR预测模型的-3.96%~1.93%,-5.54%~2.98%,-2.16%~2.95%,预测模型的误差为-0.1~0.5℃,表明预测值与实测值基本一致;与BPNN预测模型、PSO-BPNN预测模型、SVR预测模型相比,MIV-PSO-BPNN预测模型的预测结果平均绝对误差分别减少65%,54%,50%,均方误差分别减少88%,78%,69%,表明该预测模型的预测效果优于其他3种模型。结论所提模型适用于矿井掘进工作面风温的预测。 展开更多
关键词 bp神经网络 MIV算法 粒子群优化算法 风温预测 算法优化
下载PDF
用于碳酸盐岩储层裂缝检测的GWO-CS-BP算法及应用研究
7
作者 李琼 张宇 石林坤 《石油物探》 CSCD 北大核心 2024年第4期833-845,共13页
碳酸盐岩储层中的裂隙是油气的运移通道和储集空间,对于油气勘探、开发和评价都具有重要的指导意义。针对研究区碳酸盐岩储层裂缝检测的难题,提出灰狼布谷鸟优化BP算法(GWO-CS-BP),该算法是将GWO-CS(grey wolf-cuckoo search algorithm)... 碳酸盐岩储层中的裂隙是油气的运移通道和储集空间,对于油气勘探、开发和评价都具有重要的指导意义。针对研究区碳酸盐岩储层裂缝检测的难题,提出灰狼布谷鸟优化BP算法(GWO-CS-BP),该算法是将GWO-CS(grey wolf-cuckoo search algorithm)与BP(back propagation)相结合形成的裂隙检测方法。将含裂缝信息的相干、曲率、倾角、方位角和构型张量等属性作为GWO-CS-BP神经网络的输入数据,在工区地质资料约束下根据测井数据获得裂缝发育水平评价指标,进而对研究区裂缝发育水平进行评价并划分等级。研究区碳酸盐岩储层裂缝发育水平检测结果表明,GWO-CS-BP算法能够综合各属性特点对研究区的裂缝发育水平特征进行二次误差控制,获得裂缝发育水平评价指标f s并将研究区裂缝发育水平划分为3个等级及4个裂缝存在区域。其中,当研究区裂缝发育水平参数的值适中时,即f s的值大于4.0且小于5.8时,C区域最有利于油气的聚集,高产井的分布数量较多。利用GWO-CS-BP算法对研究区的裂缝发育水平进行了精细评价,并得出裂隙发育水平参数f s,实现了GWO-CS算法改进的BP神经网络在裂缝检测中的有效应用。 展开更多
关键词 地震属性 裂缝检测 GWO-CS优化算法 bp神经网络 碳酸盐岩储层
下载PDF
小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别
8
作者 韩东颖 田伟 +1 位作者 黄岩 朱国庆 《机械科学与技术》 CSCD 北大核心 2024年第1期39-44,共6页
井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构... 井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构损伤的信息;再通过特征参数建立数据集训练并测试井架钢结构损伤识别模型,该模型结合遗传算法自身特点改善了传统BP神经网络的不足。本文识别方法不需要损伤前的数据特征进行对比,便可对损伤位置进行确定。经过对石油井架钢结构模型实验验证:该方法对井架钢结构损伤识别准确率超过90%,相对于BP网络识别准确率以及识别速度均有所提高。 展开更多
关键词 井架钢结构 损伤 小波包 遗传算法 优化的bp神经网络
下载PDF
基于多特征参数的GA-WOA-BP火灾概率预测模型研究
9
作者 刘全义 吴孟洋 +1 位作者 艾洪舟 朱培 《消防科学与技术》 CAS 北大核心 2024年第6期820-825,共6页
为进一步提升火灾概率预测的准确率,针对BP神经网络在拟合过程中探测精度低、泛化能力差的问题,提出一种基于多特征参数的GA-WOA-BP火灾概率预测模型。首先通过试验采集了榉木、棉绳阴燃、明燃时的火灾特征参量,计算后得到了相应的火灾... 为进一步提升火灾概率预测的准确率,针对BP神经网络在拟合过程中探测精度低、泛化能力差的问题,提出一种基于多特征参数的GA-WOA-BP火灾概率预测模型。首先通过试验采集了榉木、棉绳阴燃、明燃时的火灾特征参量,计算后得到了相应的火灾类型发生概率;其次通过遗传算法优化BP神经网络的隐藏层结构,鲸鱼优化算法优化BP神经网络的初始权重,构建了GA-WOA-BP模型,提高融合算法的拟合能力。最后,以多特征火灾参数作为模型输入,以不同类型火灾发生概率作为输出完成火灾概率的预测。结果表明,相比单纯BP神经网络,基于多特征参数的GA-WOA-BP火灾概率预测模型具有更好的预测性能,其评价指标RMSE、MAE、R2分别为0.020 22、0.014 33和0.992 31,能为火灾概率预测提供数据参考。 展开更多
关键词 多特征参数 鲸鱼优化算法 遗传算法 火灾概率预测 bp神经网络
下载PDF
基于改进海鸥优化算法的BP神经网络及其应用
10
作者 闫向彤 张健 +2 位作者 乔煜哲 董鹏辉 熊友锟 《传感器与微系统》 CSCD 北大核心 2024年第7期165-168,共4页
针对传统反向传播(BP)神经网络在预测时随机产生的初始权值、阈值影响准确性的问题,提出一种改进的海鸥优化算法(ISOA)对BP神经网络的初始阈值、权值进行寻优。首先,为提高海鸥优化算法(SOA)的收敛精度和跳出局部最优的能力,使用Sine混... 针对传统反向传播(BP)神经网络在预测时随机产生的初始权值、阈值影响准确性的问题,提出一种改进的海鸥优化算法(ISOA)对BP神经网络的初始阈值、权值进行寻优。首先,为提高海鸥优化算法(SOA)的收敛精度和跳出局部最优的能力,使用Sine混沌映射初始化种群,引入非线性参数A,在海鸥攻击时引入乘除策略进行扰动,同时在攻击阶段后引入反向学习策略。然后,使用ISOA优化BP神经网络初始权值、阈值,解决对初值敏感和易陷入局部最优的问题。最后,在冻结裂隙砂岩动态冲击试验中进行峰值应力预测,结果表明:对比原始BP、粒子群优化(PSO)-BP和SOA-BP,ISOA优化后的BP神经网络对峰值应力预测精度更高。 展开更多
关键词 反向传播神经网络 海鸥优化算法 混沌映射 乘除策略 反向个体
下载PDF
基于IPSO-BP的船舶航迹预测研究
11
作者 白响恩 陈诺 徐笑锋 《包装工程》 CAS 北大核心 2024年第9期201-209,共9页
目的面对复杂的海上交通及密集的物流交通流,及时有效地对船舶航迹进行跟踪预测显得尤为重要,针对传统船舶航迹预测方法精确度低且效率低下的问题,提出一种改进方法。方法在船舶自动识别系统(Automatic Identification System,AIS)数据... 目的面对复杂的海上交通及密集的物流交通流,及时有效地对船舶航迹进行跟踪预测显得尤为重要,针对传统船舶航迹预测方法精确度低且效率低下的问题,提出一种改进方法。方法在船舶自动识别系统(Automatic Identification System,AIS)数据的基础上,建立改进粒子群算法(IPSO)与BP神经网络相结合的船舶轨迹预测模型,利用船舶历史航行轨迹数据,实现对未来船舶运动的预测。选取宁波舟山港的船舶历史轨迹数据进行实验,并将IPSO-BP模型的实验结果与其他模型进行比较。结果不同模型航迹预测对比结果表明,IPSO-BP模型的性能较好,其预测精度较高,适用于船舶轨迹预测。结论使用IPSO-BP模型能够更加精准地预测船舶航迹,在船舶危险预警、船舶异常监测等方面具有重要的指导作用。 展开更多
关键词 AIS数据 航迹预测 改进粒子群算法 bp神经网络
下载PDF
基于粒子群优化BP神经网络的中空夹层钢管混凝土柱轴压承载力研究
12
作者 赵均海 华林炜 王昱 《建筑钢结构进展》 CSCD 北大核心 2024年第9期45-52,共8页
圆中空夹层钢管混凝土(concrete filled double-skin steel tube,CFDST)柱因其独特的结构形式与优异的力学性能,已成为现代工程结构中的主要受力构件。然而外钢管、内钢管与核心混凝土之间的相互约束作用导致其受力比较复杂。为此,采用P... 圆中空夹层钢管混凝土(concrete filled double-skin steel tube,CFDST)柱因其独特的结构形式与优异的力学性能,已成为现代工程结构中的主要受力构件。然而外钢管、内钢管与核心混凝土之间的相互约束作用导致其受力比较复杂。为此,采用PSO-BP混合神经网络算法对圆CFDST柱的轴压承载力进行了研究。收集了167组数据建立数据库,并选取8种影响因素作为输入层参数,轴压承载力作为输出层参数,分析了传统BP神经网络模型所存在的缺陷,建立了PSO-BP神经网络模型。此外,将机器学习模型与3种规范的结果进行比较,结果表明机器学习模型的精度比3种规范的精度更高。相较于BP神经网络模型,PSO-BP神经网络模型具有更好的预测能力,更有助于预测CFDST柱的轴压承载力,对工程上研究CFDST柱的力学性能有着重要意义。 展开更多
关键词 bp神经网络 粒子群优化算法 中空夹层钢管混凝土柱 轴压承载力 机器学习模型
下载PDF
BP神经网络算法在求解数学建模最优化问题中的应用
13
作者 吴小兰 张益敏 张奕河 《计算机应用文摘》 2024年第6期72-74,79,共4页
为了解决目标函数较为复杂、无法用初等函数表示的最优化问题,文章采用了结合BP神经网络与遗传算法的方法进行求解。求解过程分为两个模块:第一,利用BP神经网络算法确定目标函数的解析式;第二,利用遗传算法寻找目标函数的最优解。为验... 为了解决目标函数较为复杂、无法用初等函数表示的最优化问题,文章采用了结合BP神经网络与遗传算法的方法进行求解。求解过程分为两个模块:第一,利用BP神经网络算法确定目标函数的解析式;第二,利用遗传算法寻找目标函数的最优解。为验证该方法的可行性,文章对单变量和多变量两种情况进行了验证。 展开更多
关键词 bp神经网络 遗传算法 最优化
下载PDF
基于FOA-BP-AdaBoost的大坝变形预测模型及应用
14
作者 王凯 李鸳承 +3 位作者 范亚军 何广焕 蒙金龙 赵磊 《红水河》 2024年第2期1-5,共5页
为提升大坝变形监测预测精度,解决变形量受多因素影响等问题,笔者提出了基于果蝇优化算法(FOA)、BP神经网络的AdaBoost强预测组合模型(FOA-BP-AdaBoost),并与BP神经网络模型、FOA-BP神经网络模型应用于工程实例中的预测精度进行多方位... 为提升大坝变形监测预测精度,解决变形量受多因素影响等问题,笔者提出了基于果蝇优化算法(FOA)、BP神经网络的AdaBoost强预测组合模型(FOA-BP-AdaBoost),并与BP神经网络模型、FOA-BP神经网络模型应用于工程实例中的预测精度进行多方位量化对比。结果表明:强预测模型集齐了果蝇算法全局优化、BP神经网络局部寻优和AdaBoost“优中选优”的特点,最大程度优化了预测效果;实例应用证实了FOA-BP-AdaBoost模型在大坝变形预测领域的准确性和有效性。该模型已成功应用于工程实例,可为类似工程提供参考。 展开更多
关键词 大坝 变形监测 FOA-bp-AdaBoost模型 强预测模型 果蝇优化算法 bp神经网络
下载PDF
基于蜣螂算法优化BP的冬夏生菜根区温度预测模型 被引量:1
15
作者 刘艺梦 丁小明 +4 位作者 王会强 李恺 张观山 尹义蕾 潘守江 《农业工程学报》 EI CAS CSCD 北大核心 2024年第5期231-238,共8页
为解决生菜应用营养液膜技术(nutrient film technique,NFT)在冬夏季根区温度控制的问题,该研究基于机器学习方法,结合温室内外历史环境数据,构建BP神经网络根区温度预测模型。为提高模型精度,采用蜣螂算法(dung beetle optimizer, DBO... 为解决生菜应用营养液膜技术(nutrient film technique,NFT)在冬夏季根区温度控制的问题,该研究基于机器学习方法,结合温室内外历史环境数据,构建BP神经网络根区温度预测模型。为提高模型精度,采用蜣螂算法(dung beetle optimizer, DBO)优化BP神经网络模型的输入权重和阈值,构建了冬夏两个季节的基于DBO-BP神经网络的栽培槽内根区温度预测模型,并与GA-BP、BP神经网络模型进行对比。结果表明,根区温度预测值与真实值变化趋势较为一致,DBO-BP模型温度预测最大误差为2.21°C,决定系数为0.943,而GA-BP与BP模型决定系数分别为0.928、0.892;DBO-BP模型评价指标的均方根误差、平均绝对误差分别为0.707、0.549°C,均小于其他模型评价指标。DBO-BP神经网络可满足在NFT栽培中根区温度预测精度的需求,能够为生菜栽培根区快速控温提供有效方法。 展开更多
关键词 温室 温度 营养液膜技术 蜣螂优化算法 bp神经网络 根区温度预测
下载PDF
基于WOA-BP算法的氟金云母钻削工艺参数优化 被引量:1
16
作者 戴春雨 马廉洁 +2 位作者 孙德谦 李红双 陶其赫 《组合机床与自动化加工技术》 北大核心 2024年第1期135-139,共5页
通过氟金云母陶瓷钻削实验,测试了在不同加工参数下的材料去除量和刀具磨损量。利用WOA算法优化BP神经网络,并基于单因素实验值和WOA-BP网络预测值,利用最小二乘法拟合,建立了材料去除率和刀具磨损率关于工艺参数的一元模型,以相关系数... 通过氟金云母陶瓷钻削实验,测试了在不同加工参数下的材料去除量和刀具磨损量。利用WOA算法优化BP神经网络,并基于单因素实验值和WOA-BP网络预测值,利用最小二乘法拟合,建立了材料去除率和刀具磨损率关于工艺参数的一元模型,以相关系数检验了模型的精确度。在一元模型的基础上提出了多元模型,基于正交实验值和WOA算法对多元模型进行求解,模型误差在合理范围内。以材料去除率最大和刀具磨损率最小为优化目标,基于WOA算法进行了工艺参数双目标优化,得到了一组最优参数。基于最优工艺参数进行验证实验,实验结果表明得到的最优参数是合理的。 展开更多
关键词 钻削加工 工艺参数 WOA算法 bp神经网络 双目标优化
下载PDF
基于GA-PSO-BP神经网络的气象能见度预测
17
作者 邱国新 殷利平 +2 位作者 刘长征 梅平 温华洋 《科学技术与工程》 北大核心 2024年第15期6164-6171,共8页
针对安徽省气象能见度数据缺测问题,选取安徽省4种不同地形条件下的自动气象站点(黄山站、灵璧站、山南溪谷站、白泽湖站)2017—2019年的气象数据,首先采用灰色关联分析法筛选出与能见度联系紧密的气象要素,然后构建遗传算法(genetic al... 针对安徽省气象能见度数据缺测问题,选取安徽省4种不同地形条件下的自动气象站点(黄山站、灵璧站、山南溪谷站、白泽湖站)2017—2019年的气象数据,首先采用灰色关联分析法筛选出与能见度联系紧密的气象要素,然后构建遗传算法(genetic algorithm,GA)和粒子群算法(particle swarm optimization algorithm,PSO)混合算法优化BP(back propagation)神经网络的预测模型,对4种不同地形条件下的自动气象站点的能见度进行预测,并与RF预测模型、XGBoost预测模型的预测效果进行对比,结果表明采用GA-PSO-BP神经网络预测模型无论在哪种地形条件下,预测误差更小,模型精度更高。 展开更多
关键词 遗传算法 粒子群算法 bp神经网络 能见度预测
下载PDF
基于BP神经网络的电动汽车动力电池产热估计
18
作者 王敬翰 吕杰 +3 位作者 赵丁 林文野 宋文吉 冯自平 《化工进展》 EI CAS CSCD 北大核心 2024年第1期400-406,共7页
电池的产热情况是电池热管理的重要指标之一,准确估计电池产热功率对构建高效运行的电池热管理系统以确保电动汽车安全行驶至关重要。然而,目前大多采用基于模型的方法进行电池产热估计,但此方法存在耗费时间长和仅应用于某种特定电池... 电池的产热情况是电池热管理的重要指标之一,准确估计电池产热功率对构建高效运行的电池热管理系统以确保电动汽车安全行驶至关重要。然而,目前大多采用基于模型的方法进行电池产热估计,但此方法存在耗费时间长和仅应用于某种特定电池状况产热估计等缺点,无法解决电动汽车电池实时产热估计的问题。对此,本文提出了一种基于人工智能算法的精准电池产热功率估计方法,即基于BP(back propagation,BP)神经网络的电动汽车动力电池产热估计模型。该模型利用贝叶斯优化算法(Bayesian optimization,BO)对BP神经网络进行超参数选取,采用Adam(adaptive momentum estimation,Adam)优化算法加快收敛速度,提高了模型的准确度和稳定性。研究对比了不同放电倍率和不同环境温度下恒流放电实验的电池产热功率,结果表明模型的估计平均误差为5.01%,最大误差仅为5.53W,R2拟合指标最高可达99.98%,证明了所提出的电池产热估计模型取得了较高的估计精度和较强的鲁棒性,为电动汽车电池实时产热估计提供了一个范式结构。 展开更多
关键词 电动汽车 动力电池 bp神经网络 产热估计 优化算法
下载PDF
基于PROA-BP的激光3D投影振镜偏转电压预测模型
19
作者 林雪竹 王海 +4 位作者 郭丽丽 闫东明 李丽娟 刘悦 孙静 《光子学报》 EI CAS CSCD 北大核心 2024年第3期49-61,共13页
为减小激光3D投影系统振镜偏转角偏差与根据振镜偏转角标定的转轴公垂线长度e误差引起的投影系统综合非线性误差,实现激光3D投影系统高精度辅助装配,提出一种基于改进的?鱼优化算法-BP神经网络的激光3D投影振镜偏转电压预测模型,以激光... 为减小激光3D投影系统振镜偏转角偏差与根据振镜偏转角标定的转轴公垂线长度e误差引起的投影系统综合非线性误差,实现激光3D投影系统高精度辅助装配,提出一种基于改进的?鱼优化算法-BP神经网络的激光3D投影振镜偏转电压预测模型,以激光出射方向单位矢量作为输入预测振镜偏转电压数值。将改进的?鱼算法与BP神经网络相结合,解决BP神经网络容易陷入局部最优解问题,并通过BP神经网络实现激光3D投影系统综合非线性误差的耦合与补偿。结果表明,改进的?鱼算法-BP神经网络训练10 000次后均方差误差和平均绝对误差均值分别是粒子群算法-BP神经网络的41.2%、62.4%,是BP神经网络的22.2%、50.7%。基于改进的?鱼算法-BP激光3D投影振镜偏转电压模型的投影定位精度为0.35 mm,与激光3D投影传统模型相比,投影定位精度提升了30%,可实现更高精度投影定位。 展开更多
关键词 激光3D投影系统 非线性误差 ?鱼优化算法 bp神经网络 投影定位精度
下载PDF
基于PSO-IBP神经网络的纯电动汽车电驱总成故障诊断
20
作者 肖伟 李泽军 +2 位作者 管天福 贺路 陈绪兵 《现代制造工程》 CSCD 北大核心 2024年第1期137-141,共5页
为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)... 为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)作为BP神经网络的激活函数,通过粒子群优化算法对BP神经网络权值和阈值进行动态寻优,构建PSO-IBP模型。通过采集纯电动汽车电驱总成故障数据,分别对PSO-IBP神经网络模型、BP神经网络模型和概率神经网络(Probabilistic Neural Network,PNN)模型进行训练与仿真,结果表明,相比于BP神经网络方法及概率神经网络方法,基于PSO-IBP神经网络模型的纯电动汽车电驱总成故障诊断方法具有更高的准确率。 展开更多
关键词 纯电动汽车 粒子群算法 bp神经网络 故障诊断
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部