Recently,development of high technology has been required for the formation of uniform thin film in manufacturing processes of semiconductor as the precision instruments become more sophisticated.A method called spin ...Recently,development of high technology has been required for the formation of uniform thin film in manufacturing processes of semiconductor as the precision instruments become more sophisticated.A method called spin coating is often used for spreading photoresist on a wafer surface and drying photoresist film.In spin coating process,photoresist is uniformly spread on the wafer surface by centrifugal force caused by rotating wafer.However,it is a serious concern that streaky lines,which are caused by spiral vortices,appear on the wafer surface and prevent the formation of uniform film in the case of high rotating speed.On the other hand,in the case of low rotating speed,a small hump of the film is formed near the wafer edge.The main purpose of this study is to make clear the drying characteristics of the flowing liquid film on the rotating wafer.Temperature distribution of the flowing liquid film is captured by an infrared thermal video camera and radial gradient of the film temperature is introduced in order to evaluate the drying characteristic of the flowing film under steady state condition.Effects of the flow rate of the liquid film on the film temperature are investigated.The film temperature gradually decreases in the radial direction in all cases.At low rotating speed,the radial gradient of the film temperature is almost constant widely.On the other hand,at high rotating speed,the radial gradient of the film temperature takes a certain maximum value.It is found that the location of the gradient peak corresponds with the transition region of the air boundary layer,in which spiral vortices swirl,and shifts to the inner side of the disk with an increase of the liquid flow rate.展开更多
Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the ...Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity(V), the chute width(W) and the inlet film thickness(d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field,especially small radial magnetic fields(Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved.展开更多
The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic(CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding...The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic(CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding and the transition of flow pattern when flooding happened. The influences of the surface tension and liquid viscosity were specially analyzed. Comparisons of the calculated velocity at the onset of flooding with the available experimental results showed a good agreement. The calculations verify that the fluctuation frequency and the liquid film thickness are almost unaffected by the superficial gas velocity until the flooding is triggered due to the Kelvin–Helmholtz instability. When flooding triggered at the superficial liquid velocity larger than0.15 m·s-1, the interfacial wave developed to slug flow, while it developed to entrainment flow when it was smaller than 0.08 m·s-1. The interfacial waves were more easily torn into tiny droplets with smaller surface tension, eventually evolving into the mist flow. When the liquid viscosity increases, the liquid film has a thicker holdup with more intensive fluctuations, and more likely developed to the slug flow.展开更多
On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict ...On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict the breakup characteristics of the power law film. The predicting formulas of stripping breakup length and diameter of ligament were put forward presently. Through high-speed photography and laser light sheet illumination,different breakup characteristics of flat power law film under different conditions were derived. The characteristic dimension of breakup regimes were defined and extracted. The effects of several parameters(injection pressure,ambient pressure, nozzle structure and fluid property) on the stripping breakup length and spray angle were investigated. The results revealed that increasing both the velocity of liquid film and the ambient pressure facilitated the breakup of film, reduced the stripping breakup length and enlarged the spray angle in different extents. The comparison between theoretical and experimental results was conducted to validate the feasibility of the linear stability theory.展开更多
The flow of a freely falling liquid film of low Reynolds number down a vertical long periodic sine-shaped wavy plate of small corrugations is researched theoretically. A model based on perturbation method and power se...The flow of a freely falling liquid film of low Reynolds number down a vertical long periodic sine-shaped wavy plate of small corrugations is researched theoretically. A model based on perturbation method and power series is presented. A stream function is introduced into the governing equations and two sets of equations describing the film flow separately at zeroth and first order are developed. The zeroth order equation is solved directly. The first order equations is solved at the leading approximation. Effect of parameters Re, M, λ and ε on the free surface wave of film is discussed.展开更多
Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution betwee...Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution between horizontal pipes is established using Fluent software,the rule of transitions of the flow pattern between pipes is studied,critical Reynolds numbers of flow pattern transitions are obtained,and the accuracy of the model is verified by experiments.The mass transfer synergy angle and heat transfer synergy angle are respectively used as evaluation criteria for the mass transfer synergy and heat transfer synergy,and distribution laws of the synergy angles for droplet,droplet columnar and curtain flow patterns are obtained.Simulation results show that the mass transfer synergy angles corresponding to droplet,droplet columnar and curtain flow patterns all rise to a plateau with time.The mean mass-transfer synergy angle is 98°for the droplet flow pattern,higher than 96.5°for the droplet columnar flow pattern and 95°for the curtain flow pattern.The results show that the mass transfer synergy of the droplet flow pattern is better than that of the droplet columnar flow pattern and that of the curtain flow pattern.展开更多
文摘Recently,development of high technology has been required for the formation of uniform thin film in manufacturing processes of semiconductor as the precision instruments become more sophisticated.A method called spin coating is often used for spreading photoresist on a wafer surface and drying photoresist film.In spin coating process,photoresist is uniformly spread on the wafer surface by centrifugal force caused by rotating wafer.However,it is a serious concern that streaky lines,which are caused by spiral vortices,appear on the wafer surface and prevent the formation of uniform film in the case of high rotating speed.On the other hand,in the case of low rotating speed,a small hump of the film is formed near the wafer edge.The main purpose of this study is to make clear the drying characteristics of the flowing liquid film on the rotating wafer.Temperature distribution of the flowing liquid film is captured by an infrared thermal video camera and radial gradient of the film temperature is introduced in order to evaluate the drying characteristic of the flowing film under steady state condition.Effects of the flow rate of the liquid film on the film temperature are investigated.The film temperature gradually decreases in the radial direction in all cases.At low rotating speed,the radial gradient of the film temperature is almost constant widely.On the other hand,at high rotating speed,the radial gradient of the film temperature takes a certain maximum value.It is found that the location of the gradient peak corresponds with the transition region of the air boundary layer,in which spiral vortices swirl,and shifts to the inner side of the disk with an increase of the liquid flow rate.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB125003 and 2013GB114002)National Natural Science Foundation of China(No.11105044)
文摘Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity(V), the chute width(W) and the inlet film thickness(d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field,especially small radial magnetic fields(Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved.
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51276157)
文摘The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic(CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding and the transition of flow pattern when flooding happened. The influences of the surface tension and liquid viscosity were specially analyzed. Comparisons of the calculated velocity at the onset of flooding with the available experimental results showed a good agreement. The calculations verify that the fluctuation frequency and the liquid film thickness are almost unaffected by the superficial gas velocity until the flooding is triggered due to the Kelvin–Helmholtz instability. When flooding triggered at the superficial liquid velocity larger than0.15 m·s-1, the interfacial wave developed to slug flow, while it developed to entrainment flow when it was smaller than 0.08 m·s-1. The interfacial waves were more easily torn into tiny droplets with smaller surface tension, eventually evolving into the mist flow. When the liquid viscosity increases, the liquid film has a thicker holdup with more intensive fluctuations, and more likely developed to the slug flow.
基金Supported by the National Natural Science Foundation of China(11172205,11372219,51176137)
文摘On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict the breakup characteristics of the power law film. The predicting formulas of stripping breakup length and diameter of ligament were put forward presently. Through high-speed photography and laser light sheet illumination,different breakup characteristics of flat power law film under different conditions were derived. The characteristic dimension of breakup regimes were defined and extracted. The effects of several parameters(injection pressure,ambient pressure, nozzle structure and fluid property) on the stripping breakup length and spray angle were investigated. The results revealed that increasing both the velocity of liquid film and the ambient pressure facilitated the breakup of film, reduced the stripping breakup length and enlarged the spray angle in different extents. The comparison between theoretical and experimental results was conducted to validate the feasibility of the linear stability theory.
基金Acknowledgement: This work is supported by Natural Science Foundation of Tianjin of China (No. 07JCYBJC01300).
文摘The flow of a freely falling liquid film of low Reynolds number down a vertical long periodic sine-shaped wavy plate of small corrugations is researched theoretically. A model based on perturbation method and power series is presented. A stream function is introduced into the governing equations and two sets of equations describing the film flow separately at zeroth and first order are developed. The zeroth order equation is solved directly. The first order equations is solved at the leading approximation. Effect of parameters Re, M, λ and ε on the free surface wave of film is discussed.
基金Project(2016YFC0700100)supported by the National Key R&D Program of ChinaProject(JDJQ20160103)supported by the Promotion of the Connotation Development Quota Project of Colleges and Universities-Outstanding Youth of Architectural University,China。
文摘Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution between horizontal pipes is established using Fluent software,the rule of transitions of the flow pattern between pipes is studied,critical Reynolds numbers of flow pattern transitions are obtained,and the accuracy of the model is verified by experiments.The mass transfer synergy angle and heat transfer synergy angle are respectively used as evaluation criteria for the mass transfer synergy and heat transfer synergy,and distribution laws of the synergy angles for droplet,droplet columnar and curtain flow patterns are obtained.Simulation results show that the mass transfer synergy angles corresponding to droplet,droplet columnar and curtain flow patterns all rise to a plateau with time.The mean mass-transfer synergy angle is 98°for the droplet flow pattern,higher than 96.5°for the droplet columnar flow pattern and 95°for the curtain flow pattern.The results show that the mass transfer synergy of the droplet flow pattern is better than that of the droplet columnar flow pattern and that of the curtain flow pattern.