Coal mining under thin bedrock or thick unconsolidated soil layers brings mining problems related to these special geological conditions. The meaning of the term ''thin bedrock'' is defined through the...Coal mining under thin bedrock or thick unconsolidated soil layers brings mining problems related to these special geological conditions. The meaning of the term ''thin bedrock'' is defined through the thick- ness statistics of the coal seam and the bedrock layer. The coal-bearing strata having thick, unconsoli- dated aquifers and thin bedrock located at the Taiping Coal Mine in Shandong province were taken as a geological prototype for subsequent study. The geological, hydro-geological and engineering character- istics of the thin bedrock were analyzed. An engineering geological model was than established. Overbur- den failure and the development of ''Three Zones'' were studied by physical model tests. The rupture pattern and rock failure were analyzed for mining conditions under thin bedrock. The height of the caving zone and the freely flowing water fractured zone of different mining thicknesses were separately calcu- lated. The results show that a mining thickness greater than 3.5 m causes the height of the freely flowing water fractured zone to be sufficient to touch the weathered zone and the bottom of the Quaternary sys- tem aquifer, to various degrees. This, then, would lead to water and sand inrush into the working face. Measures to prevent water and sand flow inrush disasters by eliminating the power source are put fore- word. A field dewatering scheme was designed and observational data were obtained. The dewatering project had an obvious effect and the water level at working face number 8309 dropped to a safe level. The average draw down of the groundwater was observed to be 7.86 m. This showed that the dewatering project played a role in decreasing the hydraulic pressure and ensuring safety mining.展开更多
Water–sand flow triggered by rainfall is the dominant mechanism for instability and failure of sand slopes. To further analyze the stability state of sand on a slope under different rainfall conditions, the initiatio...Water–sand flow triggered by rainfall is the dominant mechanism for instability and failure of sand slopes. To further analyze the stability state of sand on a slope under different rainfall conditions, the initiation conditions and flow characteristics of water–sand flows are studied. Based on the theory of equilibrium forces and hydrological dynamics, a 1:100-scale analog model is built and verified with field observation data. The results indicate three dynamic stabilization stages of the sand slope under different weather conditions: dry sand, wet sand, and water–sand flow. Water–sand flows are triggered easilyunder short duration and heavy rainfall conditions. The rainfall threshold required to initiate water–sand flow is 4.14 mm/h. Rainfall amount and duration required to initiate water–sand flow decrease with fine sand content increasing. A sand head that develops at the front of the water–sand flow results in a flow along the edge of the sand debris flow and a ‘‘tree root’’ flow morphology. Modelingresults are consistent with theoretical analysis and field observations.展开更多
The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding eff...The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through.展开更多
The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant t...The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow(KTGF), kinetic-frictional constitutive correlation and turbulence model, a two-fluid model(TFM) was established to study the flow dynamics of the core shooting process. Two-fluid model(TFM) simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction(αs) and sand velocity(Vs).展开更多
One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the flu...One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the fluids in the dynamic state have been assessed at the reservoir conditions.The analyses in this research were Young’s modulus,compressive strength,porosity,and permeability which were done on core samples after and before fluid contact.Samples made with two different resins showed good resistance to crude oil in both states.No considerable change was seen in the analyses even at high crude oil injection rates in the dynamic state.Conversely,brine caused a noticeable change in the analyses in both states.In the presence of brine at the static state,Young’s modulus and compressive strength respectively decreased by 37.5%and 34.5%for epoxy cores,whereas these parameters respectively reduced by 30%and 41%for furan cores.In brine presence at the dynamic state,compressive strength reduction was 10.28 MPa for furan and 6.28 MPa for epoxy samples and their compressive strength reached 16.75 MPa and 26.54 MPa respectively which are higher than the critical point to be known as weak sandstone core.Moreover,Young’s modulus decrease values for furan and epoxy samples were respectively 0.37 GPa and 0.44 GPa.Therefore,brine had a more destructive effect on the mechanical characteristics of samples in the static state than the dynamic one for two resins.In addition,brine injection increased permeability by about 13.6%for furan and 34.8%for epoxy.Also,porosity raised by about 21.8%for furan,and 19%for epoxy by brine injection.The results showed that the chemical sand consolidation weakens in the face of brine production along with crude oil which can lead to increasing cost of oil production and treating wellbore again.展开更多
The Lanzhou-Xinjiang high-speed railway(HSR)traverses areas of the Gobi Desert where extremely strong winds are frequent.These strong winds cause sand/gravel hazards,an unaddressed issue that often seriously compromis...The Lanzhou-Xinjiang high-speed railway(HSR)traverses areas of the Gobi Desert where extremely strong winds are frequent.These strong winds cause sand/gravel hazards,an unaddressed issue that often seriously compromises the safe operation of the HSR.This paper studies the mechanisms leading to wind-blown sand hazards and the outcomes of sand control projects in these areas.The main findings are as follows:(1)Cold northern airflows over the Tian Shan mountain range are accelerated by the wind tunnels and downslope effect as they pass over complex terrain comprising passes,gullies,and proluvial fans.Consequently,the wind intensity often increases two-to threefold,creating frequent high-speed winds that lead to severe sand damage along the HSR.(2)In the Gobi areas with extremely strong winds,sand grains can be lifted as high as 9 m from the ground into the air,far higher than in other areas of the desert.The sand transport rate decreases exponentially with increasing height.Both wind speed and particle size determine saltation height.Coarser particles and stronger winds provide the particles with a higher kinetic energy as they collide with the ground.In the wind zones of Baili and Yandun,the analysed study areas,the saltation layer height of wind-blown sand/gravel exceeds 3 and 2 m,respectively.(3)Based on the above findings,recently emerging sand control materials,suitable for the areas of interest,were screened and developed.Furthermore,under the proposed principle of‘supplementing blocking with trapping’,a comprehensive sand control measure was established,featuring sandblocking belts comprised of multiple rows,and high,vertical sand-trapping installations with a large grids size.The installed system showed a high efficacy,reducing sand transport rate by 87.87%and significantly decreasing the deposition of sand along a trial section of the HSR.展开更多
In view of the disastrous consequences of tailings dam break and its unique evolutionary process in complex areas,this paper constructs two-dimensional shallow water equations,rheological equations and mathematical mo...In view of the disastrous consequences of tailings dam break and its unique evolutionary process in complex areas,this paper constructs two-dimensional shallow water equations,rheological equations and mathematical models of tailings sand flows on the basis of Navier–Stokes equations(N–S equations).It performs total variation diminishing(TVD)discretization on these equations,develops forward simulation programs in MATLAB2016 and conducts numerical analyses on three kinds of dam breaks(ideal dam break,asymmetric dam break and dam break with obstacles in the downstream area).The results show that TVD discretization is effective in capturing shock waves.According to the analysis on consequences of Huangmailing Tailings Dam break,the author obtains the maximum distance of tailings sand flow,the flow rate of tailings and the time that tailings reach destinations in the downstream area,thereby providing scientific basis for disaster analyses on similar tailings dam breaks and supplying technical support for emergency rescues after disasters.展开更多
基金provided by the National Natural Science Foundation of China (No.40802076)the China Postdoctoral Science Foundation (No.20110491476)
文摘Coal mining under thin bedrock or thick unconsolidated soil layers brings mining problems related to these special geological conditions. The meaning of the term ''thin bedrock'' is defined through the thick- ness statistics of the coal seam and the bedrock layer. The coal-bearing strata having thick, unconsoli- dated aquifers and thin bedrock located at the Taiping Coal Mine in Shandong province were taken as a geological prototype for subsequent study. The geological, hydro-geological and engineering character- istics of the thin bedrock were analyzed. An engineering geological model was than established. Overbur- den failure and the development of ''Three Zones'' were studied by physical model tests. The rupture pattern and rock failure were analyzed for mining conditions under thin bedrock. The height of the caving zone and the freely flowing water fractured zone of different mining thicknesses were separately calcu- lated. The results show that a mining thickness greater than 3.5 m causes the height of the freely flowing water fractured zone to be sufficient to touch the weathered zone and the bottom of the Quaternary sys- tem aquifer, to various degrees. This, then, would lead to water and sand inrush into the working face. Measures to prevent water and sand flow inrush disasters by eliminating the power source are put fore- word. A field dewatering scheme was designed and observational data were obtained. The dewatering project had an obvious effect and the water level at working face number 8309 dropped to a safe level. The average draw down of the groundwater was observed to be 7.86 m. This showed that the dewatering project played a role in decreasing the hydraulic pressure and ensuring safety mining.
基金supported by the National Natural Science Foundation of China (NSFC) (Grants Nos. 41662020 and 41462012)
文摘Water–sand flow triggered by rainfall is the dominant mechanism for instability and failure of sand slopes. To further analyze the stability state of sand on a slope under different rainfall conditions, the initiation conditions and flow characteristics of water–sand flows are studied. Based on the theory of equilibrium forces and hydrological dynamics, a 1:100-scale analog model is built and verified with field observation data. The results indicate three dynamic stabilization stages of the sand slope under different weather conditions: dry sand, wet sand, and water–sand flow. Water–sand flows are triggered easilyunder short duration and heavy rainfall conditions. The rainfall threshold required to initiate water–sand flow is 4.14 mm/h. Rainfall amount and duration required to initiate water–sand flow decrease with fine sand content increasing. A sand head that develops at the front of the water–sand flow results in a flow along the edge of the sand debris flow and a ‘‘tree root’’ flow morphology. Modelingresults are consistent with theoretical analysis and field observations.
基金financially supported by the Scientific and Technological Services Network Planning Project of Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (HHS-TSS-STS-1504)the Technological Research and Developmental Planning Projects of China Railway Corporation (2015G005-B)the National Natural Science Foundation of China (41501010, 41401611)
文摘The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through.
基金supported by the National Science Foundation of China(Grant Number 51575304)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant Number 2012ZX04012011)
文摘The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow(KTGF), kinetic-frictional constitutive correlation and turbulence model, a two-fluid model(TFM) was established to study the flow dynamics of the core shooting process. Two-fluid model(TFM) simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction(αs) and sand velocity(Vs).
文摘One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the fluids in the dynamic state have been assessed at the reservoir conditions.The analyses in this research were Young’s modulus,compressive strength,porosity,and permeability which were done on core samples after and before fluid contact.Samples made with two different resins showed good resistance to crude oil in both states.No considerable change was seen in the analyses even at high crude oil injection rates in the dynamic state.Conversely,brine caused a noticeable change in the analyses in both states.In the presence of brine at the static state,Young’s modulus and compressive strength respectively decreased by 37.5%and 34.5%for epoxy cores,whereas these parameters respectively reduced by 30%and 41%for furan cores.In brine presence at the dynamic state,compressive strength reduction was 10.28 MPa for furan and 6.28 MPa for epoxy samples and their compressive strength reached 16.75 MPa and 26.54 MPa respectively which are higher than the critical point to be known as weak sandstone core.Moreover,Young’s modulus decrease values for furan and epoxy samples were respectively 0.37 GPa and 0.44 GPa.Therefore,brine had a more destructive effect on the mechanical characteristics of samples in the static state than the dynamic one for two resins.In addition,brine injection increased permeability by about 13.6%for furan and 34.8%for epoxy.Also,porosity raised by about 21.8%for furan,and 19%for epoxy by brine injection.The results showed that the chemical sand consolidation weakens in the face of brine production along with crude oil which can lead to increasing cost of oil production and treating wellbore again.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41730644,41901011&41771010)。
文摘The Lanzhou-Xinjiang high-speed railway(HSR)traverses areas of the Gobi Desert where extremely strong winds are frequent.These strong winds cause sand/gravel hazards,an unaddressed issue that often seriously compromises the safe operation of the HSR.This paper studies the mechanisms leading to wind-blown sand hazards and the outcomes of sand control projects in these areas.The main findings are as follows:(1)Cold northern airflows over the Tian Shan mountain range are accelerated by the wind tunnels and downslope effect as they pass over complex terrain comprising passes,gullies,and proluvial fans.Consequently,the wind intensity often increases two-to threefold,creating frequent high-speed winds that lead to severe sand damage along the HSR.(2)In the Gobi areas with extremely strong winds,sand grains can be lifted as high as 9 m from the ground into the air,far higher than in other areas of the desert.The sand transport rate decreases exponentially with increasing height.Both wind speed and particle size determine saltation height.Coarser particles and stronger winds provide the particles with a higher kinetic energy as they collide with the ground.In the wind zones of Baili and Yandun,the analysed study areas,the saltation layer height of wind-blown sand/gravel exceeds 3 and 2 m,respectively.(3)Based on the above findings,recently emerging sand control materials,suitable for the areas of interest,were screened and developed.Furthermore,under the proposed principle of‘supplementing blocking with trapping’,a comprehensive sand control measure was established,featuring sandblocking belts comprised of multiple rows,and high,vertical sand-trapping installations with a large grids size.The installed system showed a high efficacy,reducing sand transport rate by 87.87%and significantly decreasing the deposition of sand along a trial section of the HSR.
文摘In view of the disastrous consequences of tailings dam break and its unique evolutionary process in complex areas,this paper constructs two-dimensional shallow water equations,rheological equations and mathematical models of tailings sand flows on the basis of Navier–Stokes equations(N–S equations).It performs total variation diminishing(TVD)discretization on these equations,develops forward simulation programs in MATLAB2016 and conducts numerical analyses on three kinds of dam breaks(ideal dam break,asymmetric dam break and dam break with obstacles in the downstream area).The results show that TVD discretization is effective in capturing shock waves.According to the analysis on consequences of Huangmailing Tailings Dam break,the author obtains the maximum distance of tailings sand flow,the flow rate of tailings and the time that tailings reach destinations in the downstream area,thereby providing scientific basis for disaster analyses on similar tailings dam breaks and supplying technical support for emergency rescues after disasters.