The transmission loss of photons during quantum key distribution(QKD)process leads to the linear key rate bound for practical QKD systems without quantum repeaters.Phase matching quantum key distribution(PM-QKD)protoc...The transmission loss of photons during quantum key distribution(QKD)process leads to the linear key rate bound for practical QKD systems without quantum repeaters.Phase matching quantum key distribution(PM-QKD)protocol,an novel QKD protocol,can overcome the constraint with a measurement-device-independent structure,while it still requires the light source to be ideal.This assumption is not guaranteed in practice,leading to practical secure issues.In this paper,we propose a modified PM-QKD protocol with a light source monitoring,named PM-QKD-LSM protocol,which can guarantee the security of the system under the non-ideal source condition.The results show that our proposed protocol performs almost the same as the ideal PM-QKD protocol even considering the imperfect factors in practical systems.PMQKD-LSM protocol has a better performance with source fluctuation,and it is robust in symmetric or asymmetric cases.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61871234 and 62001249)Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University(Grant No.KF201909)。
文摘The transmission loss of photons during quantum key distribution(QKD)process leads to the linear key rate bound for practical QKD systems without quantum repeaters.Phase matching quantum key distribution(PM-QKD)protocol,an novel QKD protocol,can overcome the constraint with a measurement-device-independent structure,while it still requires the light source to be ideal.This assumption is not guaranteed in practice,leading to practical secure issues.In this paper,we propose a modified PM-QKD protocol with a light source monitoring,named PM-QKD-LSM protocol,which can guarantee the security of the system under the non-ideal source condition.The results show that our proposed protocol performs almost the same as the ideal PM-QKD protocol even considering the imperfect factors in practical systems.PMQKD-LSM protocol has a better performance with source fluctuation,and it is robust in symmetric or asymmetric cases.