期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simulation of unsteady aerodynamic loads on high-speed trains in fluctuating crosswinds 被引量:2
1
作者 Mengge Yu Jiye Zhang Weihua Zhang 《Journal of Modern Transportation》 2013年第2期73-78,共6页
To study the unsteady aerodynamic loads of high-speed trains in fluctuating crosswinds, the fluctuating winds of a moving point shifting with high-speed trains are calculated in this paper based on Cooper theory and h... To study the unsteady aerodynamic loads of high-speed trains in fluctuating crosswinds, the fluctuating winds of a moving point shifting with high-speed trains are calculated in this paper based on Cooper theory and harmonic superposition method. The computational fluid dynamics method is used to obtain the aerodynamic load coefficients at different mean yaw angles, and the aero- dynamic admittance function is introduced to calculate unsteady aerodynamic loads of high-speed trains in fluctuating winds. Using this method, the standard deviation and maximum value of the aerodynamic force (moment) are simulated. The results show that when the train speed is fixed, the varying mean wind speeds have large impact on the fluctuating value of the wind speeds and aerodynamic loads; in contrast, when the wind speed is fixed, the varying train speeds have little impact on the fluctuating value of the wind speeds or aerodynamic loads. The ratio of standard deviation to 0.SpKU2, or maximum value to 0.5pKU2, can be expressed as the function of mean yaw angle. The peak factors of the side force and roll moment are the same ( - 3.28), the peak factor of the lift force is - 3.33, and the peak factors of the yaw moment and pitch moment are also the same (- 3.77). 展开更多
关键词 Fluctuating winds - Unsteady aerodynamicloads Yaw angle Peak factor
下载PDF
Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei
2
作者 Y.Benbouzid N.H.Allal +1 位作者 M.Fellah M.R.Oudih 《Chinese Physics C》 SCIE CAS CSCD 2018年第4期171-187,共17页
Isovector neutron-proton(np) pairing and particle-number fluctuation effects on the spectroscopic factors(SF) corresponding to one-pair like-particle transfer reactions in proton-rich even-even nuclei are studied.... Isovector neutron-proton(np) pairing and particle-number fluctuation effects on the spectroscopic factors(SF) corresponding to one-pair like-particle transfer reactions in proton-rich even-even nuclei are studied. With this aim, expressions of the SF corresponding to two-neutron stripping and two-proton pick-up reactions, which take into account the isovector np pairing effect, are established within the generalized BCS approach, using a schematic definition proposed by Chasman. Expressions of the same SF which strictly conserve the particle number are also established within the Sharp-BCS(SBCS) discrete projection method. In both cases, it is shown that these expressions generalize those obtained when only the pairing between like particles is considered. First, the formalism is tested within the Richardson schematic model. Second, it is applied to study even-even proton-rich nuclei using the single-particle energies of a Woods-Saxon mean-field. In both cases, it is shown that the np pairing effect and the particle-number projection effect on the SF values are important, particularly in N =Z nuclei, and must then be taken into account. 展开更多
关键词 neutron-proton pairing particle-number fluctuations spectroscopic factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部