A proposition based on the fluctuation theorem in thermodynamics is formulated to quantitatively describe molecular evolution processes in biology. Although we cannot give full proof of its generality, we demonstrate ...A proposition based on the fluctuation theorem in thermodynamics is formulated to quantitatively describe molecular evolution processes in biology. Although we cannot give full proof of its generality, we demonstrate via computer simulation its applicability in an example of DNA in vitro evolution. According to this theorem, the evolution process is a series of exponentially rare fluctuations fixed by the force of natural selection展开更多
Recent advances in studies of genetic variation at protein and DNA levels in plant natural populations and its relationship with environmental changes were reviewed with special reference to the works on the wild barl...Recent advances in studies of genetic variation at protein and DNA levels in plant natural populations and its relationship with environmental changes were reviewed with special reference to the works on the wild barley ( Hordeum spontaneum C. Koch.). On one side, adaptation was shown in statistic data, on the other side, the fact that a considerable part of genetic variation does exist within populations (subpopulations) under same ecological condition indicated its maintainability of neutral or near_neutral mutations in natural populations. The researches on adaptive populations of plants, especially on wild soybean ( Glycine soja Sieb. et Zucc.) mainly conducted in author’s laboratory, have shown that the most part of molecular variation within and among populations can not be explained by selection particularly as far as the individual uniqueness was concerned. There are some data shown that adaptation may be caused by accumulation of a few near_neutral mutations. Recent publications on molecular mechanisms of morphological evolution has been received special attention to elucidate the discrepancy between molecular evolution and morphological adaptive evolution. A frame on the unified evolution theory has been built. Finally some related viewpoints of philosophy were discussed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10721403)the National Basic Research Program of China (Grant No. 2007CB814802)the Jun-Zheng Foundation at Peking University
文摘A proposition based on the fluctuation theorem in thermodynamics is formulated to quantitatively describe molecular evolution processes in biology. Although we cannot give full proof of its generality, we demonstrate via computer simulation its applicability in an example of DNA in vitro evolution. According to this theorem, the evolution process is a series of exponentially rare fluctuations fixed by the force of natural selection
文摘Recent advances in studies of genetic variation at protein and DNA levels in plant natural populations and its relationship with environmental changes were reviewed with special reference to the works on the wild barley ( Hordeum spontaneum C. Koch.). On one side, adaptation was shown in statistic data, on the other side, the fact that a considerable part of genetic variation does exist within populations (subpopulations) under same ecological condition indicated its maintainability of neutral or near_neutral mutations in natural populations. The researches on adaptive populations of plants, especially on wild soybean ( Glycine soja Sieb. et Zucc.) mainly conducted in author’s laboratory, have shown that the most part of molecular variation within and among populations can not be explained by selection particularly as far as the individual uniqueness was concerned. There are some data shown that adaptation may be caused by accumulation of a few near_neutral mutations. Recent publications on molecular mechanisms of morphological evolution has been received special attention to elucidate the discrepancy between molecular evolution and morphological adaptive evolution. A frame on the unified evolution theory has been built. Finally some related viewpoints of philosophy were discussed.