Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on ...Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on inter-phase transfer behaviors with non-ideal contacting patterns of flue gas and slurry droplets,three regions in spray scrubber are distinguished in terms of gas-slurry flow structures using CFD method in the Eulerian-Lagrangian framework.A comprehensive model is established by involving the transfer process between two phases and chemical reactions in aqueous phase,which is validatedwith the measured data froma WFGD scrubber of 330 MW coal-fired power unit.Numerical results show that the overall uniformity degree of flue gas in whole scrubber is largely determined by the force-balanced droplets in the middle part of scrubber,which is dominated by counter-current mode.Both momentum transfer behavior and SO_(2) chemical absorption process present the synchronicity with the evolution of gas-slurry flow pattern,whilst the heat transfer together with H_(2)O evaporation has little effect on overall absorption process.Three regions are firstly defined as Gas Inlet Region(GIR),Dominant Absorption Region(DAR)and Slurry Dispersed Region(SDR)from the bottom to top of scrubber.SO_(2) is mainly scrubbed in DAR,which provides much more intensive interaction between two phases compared to GIR or SDR.A better understanding of the desulfurization process is obtained from the fundamental relationship between transport phenomena and chemical reactions based upon the complicated hydrodynamics of gas-slurry two-phase flow,which should be useful for designing and optimizing the scrubber in coal-fired power unit.展开更多
A sodium–zinc sorbent based flue gas desulfurization technology(Na–Zn-FGD) was proposed based on the experiments and analyses of the thermal decomposition characteristics of Ca SO3 and Zn SO3·2.5H2 O, the waste...A sodium–zinc sorbent based flue gas desulfurization technology(Na–Zn-FGD) was proposed based on the experiments and analyses of the thermal decomposition characteristics of Ca SO3 and Zn SO3·2.5H2 O, the waste products of calcium-based semi-dry and zinc-based flue gas desulfurization(Ca–SD-FGD and Zn–SD-FGD) technologies, respectively. It was found that Zn SO3·2.5H2 O first lost crystal H2 O at 100 °C and then decomposed into SO2 and solid Zn O at 260 °C in the air, while Ca SO3 is oxidized at 450 °C before it decomposed in the air. The experimental results confirm that Zn–SD-FGD technology is good for SO2 removal and recycling, but with problem in clogging and high operational cost. The proposed Na–Zn-FGD is clogging proof, and more cost-effective. In the new process, Na2CO3 is used to generate Na2SO3 for SO2absorption, and the intermediate product Na HSO3 reacts with Zn O powders, producing Zn SO3·2.5H2 O precipitate and Na2SO3 solution. The Na2SO3 solution is clogging proof, which is re-used for SO2 absorption. By thermal decomposition of Zn SO3·2.5H2 O, Zn O is re-generated and SO2 with high purity is co-produced as well. The cycle consumes some amount of raw material Na2CO3 and a small amount of Zn O only. The newly proposed FGD technology could be a substitute of the traditional semi-dry FGD technologies.展开更多
基金This work was supported by the National Natural Science Foundation of China(51706070 and U1910215)the Fundamental Research Funds for the Central Universities(2018ZD03,2020MS008 and 2020MS078).
文摘Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on inter-phase transfer behaviors with non-ideal contacting patterns of flue gas and slurry droplets,three regions in spray scrubber are distinguished in terms of gas-slurry flow structures using CFD method in the Eulerian-Lagrangian framework.A comprehensive model is established by involving the transfer process between two phases and chemical reactions in aqueous phase,which is validatedwith the measured data froma WFGD scrubber of 330 MW coal-fired power unit.Numerical results show that the overall uniformity degree of flue gas in whole scrubber is largely determined by the force-balanced droplets in the middle part of scrubber,which is dominated by counter-current mode.Both momentum transfer behavior and SO_(2) chemical absorption process present the synchronicity with the evolution of gas-slurry flow pattern,whilst the heat transfer together with H_(2)O evaporation has little effect on overall absorption process.Three regions are firstly defined as Gas Inlet Region(GIR),Dominant Absorption Region(DAR)and Slurry Dispersed Region(SDR)from the bottom to top of scrubber.SO_(2) is mainly scrubbed in DAR,which provides much more intensive interaction between two phases compared to GIR or SDR.A better understanding of the desulfurization process is obtained from the fundamental relationship between transport phenomena and chemical reactions based upon the complicated hydrodynamics of gas-slurry two-phase flow,which should be useful for designing and optimizing the scrubber in coal-fired power unit.
基金Supported by the National High Technology Research and Development Program of China(2009AA05Z302)
文摘A sodium–zinc sorbent based flue gas desulfurization technology(Na–Zn-FGD) was proposed based on the experiments and analyses of the thermal decomposition characteristics of Ca SO3 and Zn SO3·2.5H2 O, the waste products of calcium-based semi-dry and zinc-based flue gas desulfurization(Ca–SD-FGD and Zn–SD-FGD) technologies, respectively. It was found that Zn SO3·2.5H2 O first lost crystal H2 O at 100 °C and then decomposed into SO2 and solid Zn O at 260 °C in the air, while Ca SO3 is oxidized at 450 °C before it decomposed in the air. The experimental results confirm that Zn–SD-FGD technology is good for SO2 removal and recycling, but with problem in clogging and high operational cost. The proposed Na–Zn-FGD is clogging proof, and more cost-effective. In the new process, Na2CO3 is used to generate Na2SO3 for SO2absorption, and the intermediate product Na HSO3 reacts with Zn O powders, producing Zn SO3·2.5H2 O precipitate and Na2SO3 solution. The Na2SO3 solution is clogging proof, which is re-used for SO2 absorption. By thermal decomposition of Zn SO3·2.5H2 O, Zn O is re-generated and SO2 with high purity is co-produced as well. The cycle consumes some amount of raw material Na2CO3 and a small amount of Zn O only. The newly proposed FGD technology could be a substitute of the traditional semi-dry FGD technologies.