The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi...The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.展开更多
During wet complexation denitrification of flue gas,Fe^(Ⅱ)EDTA regeneration,also known as reducing Fe^(Ⅱ)EDTA and Fe^(Ⅱ)EDTA-nitric oxide(NO)to Fe^(Ⅱ)EDTA,is crucial.In this paper,ultraviolet(UV)light was used for...During wet complexation denitrification of flue gas,Fe^(Ⅱ)EDTA regeneration,also known as reducing Fe^(Ⅱ)EDTA and Fe^(Ⅱ)EDTA-nitric oxide(NO)to Fe^(Ⅱ)EDTA,is crucial.In this paper,ultraviolet(UV)light was used for the first time to reduce Fe^(Ⅱ)EDTA-NO.The experimental result demonstrated that Fe^(Ⅱ)EDTA-NO reduction rate increased with UV power increasing,elevated temperature,and initial Fe^(Ⅱ)EDTA-NO concentration decreasing.Fe^(Ⅱ)EDTA-NO reduction rate increased first and then decreased as pH value increased(2.0-10.0).Fe^(Ⅱ)EDTA-NO reduction with UV irradiation presented a first order reaction with respect to Fe^(Ⅱ)EDTA-NO.Compared with other Fe^(Ⅱ)EDTA regeneration methods,Fe^(Ⅱ)EDTA regeneration with UV show more superiority through comprehensive consideration of regeneration rate and procedure.Subsequently,NO absorption experiment by Fe^(Ⅱ)EDTA solution with UV irradiation confirmed that UV can significantly promote the NO removal performance of Fe^(Ⅱ)EDTA.Appropriate oxygen concentration(3%(vol))and acidic environment(pH=4)was favorable for NO removal.With UV power increasing as well as temperature decreasing,NO removal efficiency rose.In addition,the mechanism research indicates that NO from flue gas is mostly converted to NO_(2)-,NO_(3)-,NH_(4)^(+),N_(2),and N_(2)O with Fe^(Ⅱ)EDTA absorption liquid with UV irradiation.UV strengthens NO removal in Fe^(Ⅱ)EDTA absorption liquid by forming a synergistic effect of oxidation-reduction-complexation.Finally,compared with NO removal methods with Fe^(Ⅱ)EDTA,Fe^(Ⅱ)EDTA combined UV system shows prominent technology advantage in terms of economy and secondary pollution.展开更多
The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performanc...The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade.展开更多
The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and micr...The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.展开更多
Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex ...Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex flow field are two issues which have received great attention. Accordingly, a laboratory-scale fluidized bed reactor was constructed to investigate the effects of physical properties and external conditions on desulfurization performance of slaked lime, and the conclusions were tried out in an industrial-scale CFB-FGD tower. After that, a numerical model of the tower was established based on computational particle fluid dynamics(CPFD) and two-film theory. After comparison and validation with actual operation data, the effects of operating parameters on gas-solid distribution and desulfurization characteristics were investigated. The results of experiments and industrial trials showed that the use of slaked lime with a calcium hydroxide content of approximately 80% and particle size greater than 40 μm could significantly reduce the cost of desulfurizer. Simulation results showed that the flow field in the desulfurization tower was skewed under the influence of circulating ash. We obtained optimal operating conditions of 7.5 kg·s^(-1)for the atomized water flow, 70 kg·s^(-1)for circulating ash flow, and 0.56 kg·s^(-1)for slaked lime flow, with desulfurization efficiency reaching 98.19% and the exit flue gas meeting the ultraclean emission and safety requirements. All parameters selected in the simulation were based on engineering examples and had certain application reference significance.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
Based on the basic principle and mechanism of flue gas denitrification,the commonly used catalysts for flue gas denitrification were introduced firstly,and then the catalytic performance,stability and reaction mechani...Based on the basic principle and mechanism of flue gas denitrification,the commonly used catalysts for flue gas denitrification were introduced firstly,and then the catalytic performance,stability and reaction mechanism of catalysts in the market were analyzed.Different types of catalysts were studied to look for green catalysts with high activity,sulfur resistance,water vapor resistance and other advantages.The mechanism of denitration reaction of green catalysts was discussed,and the laws of formation,propagation and consumption of active species in the reaction process were revealed to provide theoretical basis for optimizing catalyst design and improving reaction conditions.Then the research status and problems of new catalysts for flue gas denitrification were described.Finally,the future development direction of green catalysts for flue gas denitration was discussed to improve the performance and stability of catalysts and meet the performance requirements of denitration catalysts in different industries.展开更多
The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM...The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM) consistent with American standard test methodtogether with the semi-continuous emissions monitoring (SCEM) system as well as a mobile laboratoryfor mercury monitoring. The mercury and its speciation concentrations including participate mercuryat three locations of before air preheater, before electrostatic precipitator (ESP) and after ESPwere measured using the OHM and SCEM methods under normal operation conditions of the boiler systemas a result of firing a bituminous coal. The vapor-phase total mercury Hg(VT) concentration declinedwith the decrease of flue gas temperature because of mercury species transformation from oxidizedmercury to particulate mercury as the flue gas moved downstream from the air preheater to the ESPand after the ESP. A good agreement for Hg°, Hg^(2+) and Hg( VT) was obtained between the twomethods in the ash-free area. But in the dense particle-laden flue gas area, there appeared to be abig bias for mercury speciation owing to dust cake formed in the filter of OHM sampling probe. Theparticulateaffinity to the flue gas mercury and the impacts of sampling condition to accuracy ofmeasure were discussed.展开更多
The tests of flue gas desulfurization were carried out on a circulating fluidized bed reactor in which the flue gas had different velocities at different sections. The SO 2 removal efficiency could be as high as 80% ...The tests of flue gas desulfurization were carried out on a circulating fluidized bed reactor in which the flue gas had different velocities at different sections. The SO 2 removal efficiency could be as high as 80% when Ca/S molar ratio was 1 1 and a small amount of water was sprayed into the reactor by a two phase (gas liquid) system nozzle.展开更多
In order to realize tobacco curing with energy saving and emission reduc- ing and lower cost, the waste heat recovering equipment was designed and built on blowing-upward type bulk curing barn. The comparative experim...In order to realize tobacco curing with energy saving and emission reduc- ing and lower cost, the waste heat recovering equipment was designed and built on blowing-upward type bulk curing barn. The comparative experiment of tobacco leaf curing was conducted between a bulk curing barn with waste heat of flue gas and conventional bulk curing barn. The results showed that the effect of saving coal in bulk curing barn with waste heat of flue gas was obvious than the contrast. The coal consumption quantity was 1.531 kg per kg of dry tobacco leaf. The saving coal in bulk curing barn with use waste heat of flue gas was 0.181 kg per kg of dry tobacco leaf than the contrast and saving coal rate was 10.57%. The electricity consumption quantity was 0.593 kWh per kg of dry tobacco leaf. The saving elec- tricity quantity in bulk curing barn with use waste heat of flue gas was 0.022 kWh/kg and the saving electricity rate was 3.58% than the contrast. The saving curing cost was 0.158 yuan per kg of dry tobacco leaf and saving cost rate 9.09% in bulk cur- ing barn with use waste heat of flue gas than the contrast. The appearance quality, grade structure and primary chemical composition had no significant difference be- tween bulk curing barn with use waste heat of flue gas and the contrast.展开更多
The study on the removal of NOx from simulated flue gas has been carded out in a lab-scale bubbling reactor using acidic solutions of sodium chlorite. Experiments were performed at various pH values and inlet NO conce...The study on the removal of NOx from simulated flue gas has been carded out in a lab-scale bubbling reactor using acidic solutions of sodium chlorite. Experiments were performed at various pH values and inlet NO concentrations in the absence or presence of SO2 gas at 45℃. The effect of SO2 on NO oxidation and NO2 absorption was critically examined. The oxidative ability of sodium chlorite was investigated at different pH values and it was found to be a better oxidant at a pH less than 4. In acidic medium, sodium chlorite decomposed into C102 gas, which is believed to participate in NO oxidation as well as in NO2 absorption. A plausible NOx removal mechanism using acidic sodium chlorite solution has been postulated. A maximum NOx removal efficiency of about 81% has been achieved.展开更多
Direct phase transformation of flue gas desulfurization gypsum in hot salt solution at atmospheric pres-sure was investigated.The effects of temperature,salt species,salt concentration,solids content,pH and modifier w...Direct phase transformation of flue gas desulfurization gypsum in hot salt solution at atmospheric pres-sure was investigated.The effects of temperature,salt species,salt concentration,solids content,pH and modifier were examined.The crystals obtained under different conditions and solubility of calcium sulfate in contact with solid gypsum were also determined.α-Calcium sulfate hemihydrate crystals of stubby columnar shape and regular pentahedral sides were obtained under the following conditions:salt concentration 20%-30%,operation tempera-ture 95-100 °C,solids mass content in the slurry 10%-30% and neutral pH.Thermodynamic analysis revealed that phase transformation of calcium sulfate dihydrate to α-calcium sulfate hemihydrate occurs because of the difference in solubilities between the two solid gypsum phases in this system.展开更多
Seawater flue gas desulfurization (Seawater FGD) process has a number of advantages, but the study on mechanism of seawater FGD is little. The effects of absorbing efficiency of SO 2 by the constant component and par...Seawater flue gas desulfurization (Seawater FGD) process has a number of advantages, but the study on mechanism of seawater FGD is little. The effects of absorbing efficiency of SO 2 by the constant component and part of trace transition elements in seawater are studied by the experiment. The results indicate that the effect factors of absorption of SO 2 by seawater are alkaline, ion intensity, catalysis of Cl - and transition metal ions Fe 2+ , Mn 2+ . The degree of effect is alkaline > the catalysis of Cl -, Fe 2+ and Mn 2+ >ion intensity. The mechanisms of catalysis oxidation for S(IV) by Cl -, Fe 2+ and Mn 2+ are discussed. According to the results, some measures can be used to improve the capability of desulfurization.展开更多
Capture of CO2 by hydrate is one of the attractive technologies for reducing greenhouse effect.The primary challenges are the large energy consumption,low hydrate formation rate and separation efficiency.This work pre...Capture of CO2 by hydrate is one of the attractive technologies for reducing greenhouse effect.The primary challenges are the large energy consumption,low hydrate formation rate and separation efficiency.This work presents a new method for capture of CO2 from simulated flue gasCO2(16.60%,by mole) /N2 binary mixture by formation of cyclopentane(CP) hydrates at initial temperature of 8.1°C with the feed pressures from 2.49 to 3.95 MPa.The effect of cyclopentane and cyclopentane/water emulsion on the hydrate formation rate and CO2 separation efficiency was studied in a 1000 ml stirred reactor.The results showed the hydrate formation rate could be increased remarkably with cyclopentane/water emulsion.CO2 could be enriched to 43.97%(by mole) and 35.29%(by mole) from simulated flue gas with cyclopentane and cyclopentane/water(O/W) emulsion,respectively,by one stage hydrate separation under low feed pressure.CO2 separation factor with cyclopentane was 6.18,higher than that with cyclopentane/water emulsion(4.01) ,in the range of the feed pressure.The results demonstrated that cyclopentane/water emulsion is a good additive for efficient hydrate capture of CO2.展开更多
A novel carbon trap sampling system for gas-phase mercury measurement in flue gas is developed, including the high efficient sorbents made of modified biomass cokes and high precision sorbent traps for measuring parti...A novel carbon trap sampling system for gas-phase mercury measurement in flue gas is developed, including the high efficient sorbents made of modified biomass cokes and high precision sorbent traps for measuring particle-bound and total vapor-phase mercury in flue gas. A dedusting device is installed to collect fine fly ash for reducing the measurement errors. The thorough comparison test of mercury concentration in flue gas is conducted between the novel sampling system and the Ontario hydro method (OHM) in a 6 kW circulating fluidized bed combustor. Mercury mass balance rates of the OHM range from 95.47% to 104.72%. The mercury breakthrough rates for the second section of the sorbent trap are all below 2%. The relative deviations in the two test cases are in the range of 15. 96% to 17. 56% under different conditions. The verified data suggest that this novel carbon trap sampling system can meet the standards of quality assurance and quality control required by EPA Method 30B and can be applied to the coal-fired flue gas mercury sampling system.展开更多
The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conduc...The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conducts in sinter zone when flue gas passes through the sintering bed,which releases much heat and reduces the consumption of solid fuel.The ratio of coke breeze can be reduced from 5% to 4.7% with 2% CO in circulating flue gas.In addition,with the increase of CO content in circulating flue gas,the combustion efficiency of fuel is improved,and the flame front is increased slightly while still matches with the heat transfer front.These are beneficial to increasing the maximum temperature and prolonging the high temperature duration,especially in the upper layer of sintering bed.As a consequence,the productivity,vertical sintering velocity and quality of sinter are improved.展开更多
CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for C...CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for CO2 and other gases. However. rigorous temperature and pressure, high energy cost and industrialized hydration separator dragged the development of the hydrate based CO2 capture. In this paper, the key problems in CO2 capture from the different sources such as shifted synthesis gas, flue gas and sour natural gas or biogas were analyzed. For shifted synthesis gas and flue gas, its high energy consumption is the barrier, and for the sour natural gas or biogas (CO2/CH4 system), the bottleneck is how to enhance the selectivity of CO2 hydration. For these gases, scale-up is the main difficulty. Also, this paper explored the possibility of separating different gases by selective hydrate formation and reviewed the progress of CO2 separation from shifted synthesis gas, flue gas and sour natural gas or biogas.展开更多
In this paper,the solid waste desulfurization gypsum produced by coal-fired power plants was used as a raw material to prepare calcium sulfate whiskers with high application prospects.Calcium sulfate whiskers with uni...In this paper,the solid waste desulfurization gypsum produced by coal-fired power plants was used as a raw material to prepare calcium sulfate whiskers with high application prospects.Calcium sulfate whiskers with uniform morphology and high aspect ratio can be prepared by hydrothermal method in sulfuric acid solution.A new process of desulfurization gypsum activated by high-energy grinding to reduce the reaction temperature and sulfuric acid concentration was developed.Through the comparison of product morphology,the best grinding time was determined to be 3.5 h.The mechanism of desulfurization gypsum through physical–chemical coupling to reduce energy consumption was clarified.The activation of desulfurization gypsum by grinding and the acidic environment provided by the sulfuric acid solution made the calcium sulfate solution reached rapid saturation and accelerated the nucleation rate.By calculating the conversion and crystallization rate of calcium sulfate whiskers,it was found that there were obvious"autocatalytic"kinetic characteristics during the crystallization process.展开更多
Three gas separation technologies,chemical absorption,membrane separation and pressure swing adsorption,are usually applied for CO2 capture from flue gas in coal-fired power plants.In this work,the costs of the three ...Three gas separation technologies,chemical absorption,membrane separation and pressure swing adsorption,are usually applied for CO2 capture from flue gas in coal-fired power plants.In this work,the costs of the three technologies are analyzed and compared.The cost for chemical absorption is mainly from $30 to $60 per ton(based on CO2 avoided),while the minimum value is $10 per ton(based on CO2 avoided).As for membrane separation and pressure swing adsorption,the costs are $50 to $78 and $40 to $63 per ton(based on CO2 avoided),respectively.Measures are proposed to reduce the cost of the three technologies.For CO2 capture and storage process,the CO2 recovery and purity should be greater than 90%.Based on the cost,recovery,and purity,it seems that chemical absorption is currently the most cost-effective technology for CO2 capture from flue gas from power plants.However,membrane gas separation is the most promising alternative approach in the future,provided that membrane performance is further improved.展开更多
The absorbent composing of Bayer red mud and water was prepared and applied to removing SO2 from flue gas.Effects of the ratio of liquid to solid(L/S),the absorption temperature,the inlet SO2 concentration,the O2 conc...The absorbent composing of Bayer red mud and water was prepared and applied to removing SO2 from flue gas.Effects of the ratio of liquid to solid(L/S),the absorption temperature,the inlet SO2 concentration,the O2 concentration,SO4^2-and other different components of Bayer red mud on desulfurization were conducted.The mechanism of flue gas desulfurization was also established.The results indicated that L/S was the prominent factor,followed by the inlet SO2 concentration and the temperature was the least among them.The optimum condition was as follows:L/S,the temperature and the SO2 concentration were 20:1,25℃and 1000 mg/m^3,respectively,under the gas flow of 1.5 L/min.The desulfurization efficiency was not significantly influenced when O2 concentration was above 7%.The accumulation of SO4^2-inhibited the desulfurization efficiency.The alkali absorption and metal ions liquid catalytic oxidation were involved in the process,which accounted for 98.61%.展开更多
基金Supported by the PetroChina Science and Technology Project(2023ZG18).
文摘The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.
基金supported by National Natural Science Foundation of China(52260012)Natural Science Foundation of Jiangxi Province(20232BAB203053,20212ACB213001,20232BAB203033)+1 种基金General Project of Jiangxi Province Key Research and Development Program(20192BBG70008)Training Plan for Academic and Technical Leaders of Major Disciplines in Jiangxi Province-youth Talent Project(20232BCJ23047).
文摘During wet complexation denitrification of flue gas,Fe^(Ⅱ)EDTA regeneration,also known as reducing Fe^(Ⅱ)EDTA and Fe^(Ⅱ)EDTA-nitric oxide(NO)to Fe^(Ⅱ)EDTA,is crucial.In this paper,ultraviolet(UV)light was used for the first time to reduce Fe^(Ⅱ)EDTA-NO.The experimental result demonstrated that Fe^(Ⅱ)EDTA-NO reduction rate increased with UV power increasing,elevated temperature,and initial Fe^(Ⅱ)EDTA-NO concentration decreasing.Fe^(Ⅱ)EDTA-NO reduction rate increased first and then decreased as pH value increased(2.0-10.0).Fe^(Ⅱ)EDTA-NO reduction with UV irradiation presented a first order reaction with respect to Fe^(Ⅱ)EDTA-NO.Compared with other Fe^(Ⅱ)EDTA regeneration methods,Fe^(Ⅱ)EDTA regeneration with UV show more superiority through comprehensive consideration of regeneration rate and procedure.Subsequently,NO absorption experiment by Fe^(Ⅱ)EDTA solution with UV irradiation confirmed that UV can significantly promote the NO removal performance of Fe^(Ⅱ)EDTA.Appropriate oxygen concentration(3%(vol))and acidic environment(pH=4)was favorable for NO removal.With UV power increasing as well as temperature decreasing,NO removal efficiency rose.In addition,the mechanism research indicates that NO from flue gas is mostly converted to NO_(2)-,NO_(3)-,NH_(4)^(+),N_(2),and N_(2)O with Fe^(Ⅱ)EDTA absorption liquid with UV irradiation.UV strengthens NO removal in Fe^(Ⅱ)EDTA absorption liquid by forming a synergistic effect of oxidation-reduction-complexation.Finally,compared with NO removal methods with Fe^(Ⅱ)EDTA,Fe^(Ⅱ)EDTA combined UV system shows prominent technology advantage in terms of economy and secondary pollution.
基金Funded by National Natural Science Foundation of China(No.22008049)Natural Science Foundation of Hebei Province,China (Nos.B2020202081 and B2018202330)+1 种基金Key Laboratory of Gas Hydrate,Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,China (No.E029kf1601)Research Fund Program of Science and Technology of Colleges and Universities of Hebei Province,China (No.QN2019012)。
文摘The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade.
基金the National Natural Science Foundation of China(Nos.42177391,42077379)the Natural Science Foundation of Hunan Province,China(No.2022JJ20060)+1 种基金the Central South University Innovation-driven Research Program,China(No.2023CXQD065)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0800).
文摘The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.
基金supported by National Natural Science Foundation of China(52336005 and 52106133).
文摘Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex flow field are two issues which have received great attention. Accordingly, a laboratory-scale fluidized bed reactor was constructed to investigate the effects of physical properties and external conditions on desulfurization performance of slaked lime, and the conclusions were tried out in an industrial-scale CFB-FGD tower. After that, a numerical model of the tower was established based on computational particle fluid dynamics(CPFD) and two-film theory. After comparison and validation with actual operation data, the effects of operating parameters on gas-solid distribution and desulfurization characteristics were investigated. The results of experiments and industrial trials showed that the use of slaked lime with a calcium hydroxide content of approximately 80% and particle size greater than 40 μm could significantly reduce the cost of desulfurizer. Simulation results showed that the flow field in the desulfurization tower was skewed under the influence of circulating ash. We obtained optimal operating conditions of 7.5 kg·s^(-1)for the atomized water flow, 70 kg·s^(-1)for circulating ash flow, and 0.56 kg·s^(-1)for slaked lime flow, with desulfurization efficiency reaching 98.19% and the exit flue gas meeting the ultraclean emission and safety requirements. All parameters selected in the simulation were based on engineering examples and had certain application reference significance.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金Supported by the Interdisciplinary Team Project of Shenyang University of Technology in 2021:Green and Low-carbon(Technology and Evaluation)of Typical Industries of Carbon Peak(2021-70-06)"Double First-class"Construction Project of Liaoning Province in 2020(Scientific Research)(FWDFGD2020041).
文摘Based on the basic principle and mechanism of flue gas denitrification,the commonly used catalysts for flue gas denitrification were introduced firstly,and then the catalytic performance,stability and reaction mechanism of catalysts in the market were analyzed.Different types of catalysts were studied to look for green catalysts with high activity,sulfur resistance,water vapor resistance and other advantages.The mechanism of denitration reaction of green catalysts was discussed,and the laws of formation,propagation and consumption of active species in the reaction process were revealed to provide theoretical basis for optimizing catalyst design and improving reaction conditions.Then the research status and problems of new catalysts for flue gas denitrification were described.Finally,the future development direction of green catalysts for flue gas denitration was discussed to improve the performance and stability of catalysts and meet the performance requirements of denitration catalysts in different industries.
文摘The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM) consistent with American standard test methodtogether with the semi-continuous emissions monitoring (SCEM) system as well as a mobile laboratoryfor mercury monitoring. The mercury and its speciation concentrations including participate mercuryat three locations of before air preheater, before electrostatic precipitator (ESP) and after ESPwere measured using the OHM and SCEM methods under normal operation conditions of the boiler systemas a result of firing a bituminous coal. The vapor-phase total mercury Hg(VT) concentration declinedwith the decrease of flue gas temperature because of mercury species transformation from oxidizedmercury to particulate mercury as the flue gas moved downstream from the air preheater to the ESPand after the ESP. A good agreement for Hg°, Hg^(2+) and Hg( VT) was obtained between the twomethods in the ash-free area. But in the dense particle-laden flue gas area, there appeared to be abig bias for mercury speciation owing to dust cake formed in the filter of OHM sampling probe. Theparticulateaffinity to the flue gas mercury and the impacts of sampling condition to accuracy ofmeasure were discussed.
文摘The tests of flue gas desulfurization were carried out on a circulating fluidized bed reactor in which the flue gas had different velocities at different sections. The SO 2 removal efficiency could be as high as 80% when Ca/S molar ratio was 1 1 and a small amount of water was sprayed into the reactor by a two phase (gas liquid) system nozzle.
基金Supported by Hebei Industrial Co.,LTD.of China Tobacco(111201315524)Qiannan Co.LTD.Of Guizhou Industrial Co.,LTD.,China Tobacco([2012]17)~~
文摘In order to realize tobacco curing with energy saving and emission reduc- ing and lower cost, the waste heat recovering equipment was designed and built on blowing-upward type bulk curing barn. The comparative experiment of tobacco leaf curing was conducted between a bulk curing barn with waste heat of flue gas and conventional bulk curing barn. The results showed that the effect of saving coal in bulk curing barn with waste heat of flue gas was obvious than the contrast. The coal consumption quantity was 1.531 kg per kg of dry tobacco leaf. The saving coal in bulk curing barn with use waste heat of flue gas was 0.181 kg per kg of dry tobacco leaf than the contrast and saving coal rate was 10.57%. The electricity consumption quantity was 0.593 kWh per kg of dry tobacco leaf. The saving elec- tricity quantity in bulk curing barn with use waste heat of flue gas was 0.022 kWh/kg and the saving electricity rate was 3.58% than the contrast. The saving curing cost was 0.158 yuan per kg of dry tobacco leaf and saving cost rate 9.09% in bulk cur- ing barn with use waste heat of flue gas than the contrast. The appearance quality, grade structure and primary chemical composition had no significant difference be- tween bulk curing barn with use waste heat of flue gas and the contrast.
文摘The study on the removal of NOx from simulated flue gas has been carded out in a lab-scale bubbling reactor using acidic solutions of sodium chlorite. Experiments were performed at various pH values and inlet NO concentrations in the absence or presence of SO2 gas at 45℃. The effect of SO2 on NO oxidation and NO2 absorption was critically examined. The oxidative ability of sodium chlorite was investigated at different pH values and it was found to be a better oxidant at a pH less than 4. In acidic medium, sodium chlorite decomposed into C102 gas, which is believed to participate in NO oxidation as well as in NO2 absorption. A plausible NOx removal mechanism using acidic sodium chlorite solution has been postulated. A maximum NOx removal efficiency of about 81% has been achieved.
基金Supported by the National High Technology Research and Development Program of China(2006AA06Z385) the Science Foundation of Wuhan University of Science and Technology(2008RC06)
文摘Direct phase transformation of flue gas desulfurization gypsum in hot salt solution at atmospheric pres-sure was investigated.The effects of temperature,salt species,salt concentration,solids content,pH and modifier were examined.The crystals obtained under different conditions and solubility of calcium sulfate in contact with solid gypsum were also determined.α-Calcium sulfate hemihydrate crystals of stubby columnar shape and regular pentahedral sides were obtained under the following conditions:salt concentration 20%-30%,operation tempera-ture 95-100 °C,solids mass content in the slurry 10%-30% and neutral pH.Thermodynamic analysis revealed that phase transformation of calcium sulfate dihydrate to α-calcium sulfate hemihydrate occurs because of the difference in solubilities between the two solid gypsum phases in this system.
文摘Seawater flue gas desulfurization (Seawater FGD) process has a number of advantages, but the study on mechanism of seawater FGD is little. The effects of absorbing efficiency of SO 2 by the constant component and part of trace transition elements in seawater are studied by the experiment. The results indicate that the effect factors of absorption of SO 2 by seawater are alkaline, ion intensity, catalysis of Cl - and transition metal ions Fe 2+ , Mn 2+ . The degree of effect is alkaline > the catalysis of Cl -, Fe 2+ and Mn 2+ >ion intensity. The mechanisms of catalysis oxidation for S(IV) by Cl -, Fe 2+ and Mn 2+ are discussed. According to the results, some measures can be used to improve the capability of desulfurization.
基金Supported by the National High Technology Research and Development Program of China(2007AA03Z229) the National Natural Science Foundation of China(20876019)
文摘Capture of CO2 by hydrate is one of the attractive technologies for reducing greenhouse effect.The primary challenges are the large energy consumption,low hydrate formation rate and separation efficiency.This work presents a new method for capture of CO2 from simulated flue gasCO2(16.60%,by mole) /N2 binary mixture by formation of cyclopentane(CP) hydrates at initial temperature of 8.1°C with the feed pressures from 2.49 to 3.95 MPa.The effect of cyclopentane and cyclopentane/water emulsion on the hydrate formation rate and CO2 separation efficiency was studied in a 1000 ml stirred reactor.The results showed the hydrate formation rate could be increased remarkably with cyclopentane/water emulsion.CO2 could be enriched to 43.97%(by mole) and 35.29%(by mole) from simulated flue gas with cyclopentane and cyclopentane/water(O/W) emulsion,respectively,by one stage hydrate separation under low feed pressure.CO2 separation factor with cyclopentane was 6.18,higher than that with cyclopentane/water emulsion(4.01) ,in the range of the feed pressure.The results demonstrated that cyclopentane/water emulsion is a good additive for efficient hydrate capture of CO2.
基金The National Natural Science Foundation of China(No.51376046,51076030)the National Science and Technology Support Program of China(No.2012BAA02B01)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ13_0093,KYLX_0115,KYLX_018)
文摘A novel carbon trap sampling system for gas-phase mercury measurement in flue gas is developed, including the high efficient sorbents made of modified biomass cokes and high precision sorbent traps for measuring particle-bound and total vapor-phase mercury in flue gas. A dedusting device is installed to collect fine fly ash for reducing the measurement errors. The thorough comparison test of mercury concentration in flue gas is conducted between the novel sampling system and the Ontario hydro method (OHM) in a 6 kW circulating fluidized bed combustor. Mercury mass balance rates of the OHM range from 95.47% to 104.72%. The mercury breakthrough rates for the second section of the sorbent trap are all below 2%. The relative deviations in the two test cases are in the range of 15. 96% to 17. 56% under different conditions. The verified data suggest that this novel carbon trap sampling system can meet the standards of quality assurance and quality control required by EPA Method 30B and can be applied to the coal-fired flue gas mercury sampling system.
基金Projects(51174253,51304245)supported by the National Natural Science Foundation of ChinaProject(2013bjjxj015)supported by the Outstanding and Creative Doctor Scholarship of Central South University,ChinaProject supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conducts in sinter zone when flue gas passes through the sintering bed,which releases much heat and reduces the consumption of solid fuel.The ratio of coke breeze can be reduced from 5% to 4.7% with 2% CO in circulating flue gas.In addition,with the increase of CO content in circulating flue gas,the combustion efficiency of fuel is improved,and the flame front is increased slightly while still matches with the heat transfer front.These are beneficial to increasing the maximum temperature and prolonging the high temperature duration,especially in the upper layer of sintering bed.As a consequence,the productivity,vertical sintering velocity and quality of sinter are improved.
基金the National Natural Science Foundation of China(Grant No.51176051 and 51106054)the National Basic Research Program of China(973 Program,No.2009CB219504-03)
文摘CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for CO2 and other gases. However. rigorous temperature and pressure, high energy cost and industrialized hydration separator dragged the development of the hydrate based CO2 capture. In this paper, the key problems in CO2 capture from the different sources such as shifted synthesis gas, flue gas and sour natural gas or biogas were analyzed. For shifted synthesis gas and flue gas, its high energy consumption is the barrier, and for the sour natural gas or biogas (CO2/CH4 system), the bottleneck is how to enhance the selectivity of CO2 hydration. For these gases, scale-up is the main difficulty. Also, this paper explored the possibility of separating different gases by selective hydrate formation and reviewed the progress of CO2 separation from shifted synthesis gas, flue gas and sour natural gas or biogas.
基金supported by the State Key Laboratory of Mineral Processing Science and Technology Open Fund(BGRIMM-KJSKL-2017-16)Liaoning Provincial Department of Education Youth Project(LJ2017QL028)Coal Resource Safety Mining and Clean Utilization Engineering Research Center Open Fund(LNTU15KF18)。
文摘In this paper,the solid waste desulfurization gypsum produced by coal-fired power plants was used as a raw material to prepare calcium sulfate whiskers with high application prospects.Calcium sulfate whiskers with uniform morphology and high aspect ratio can be prepared by hydrothermal method in sulfuric acid solution.A new process of desulfurization gypsum activated by high-energy grinding to reduce the reaction temperature and sulfuric acid concentration was developed.Through the comparison of product morphology,the best grinding time was determined to be 3.5 h.The mechanism of desulfurization gypsum through physical–chemical coupling to reduce energy consumption was clarified.The activation of desulfurization gypsum by grinding and the acidic environment provided by the sulfuric acid solution made the calcium sulfate solution reached rapid saturation and accelerated the nucleation rate.By calculating the conversion and crystallization rate of calcium sulfate whiskers,it was found that there were obvious"autocatalytic"kinetic characteristics during the crystallization process.
基金Supported by the National High Technology Research and Development Program of China (2007AA03Z229)the Fundamental Research Funds for the Central Universities (2009ZM0185)
文摘Three gas separation technologies,chemical absorption,membrane separation and pressure swing adsorption,are usually applied for CO2 capture from flue gas in coal-fired power plants.In this work,the costs of the three technologies are analyzed and compared.The cost for chemical absorption is mainly from $30 to $60 per ton(based on CO2 avoided),while the minimum value is $10 per ton(based on CO2 avoided).As for membrane separation and pressure swing adsorption,the costs are $50 to $78 and $40 to $63 per ton(based on CO2 avoided),respectively.Measures are proposed to reduce the cost of the three technologies.For CO2 capture and storage process,the CO2 recovery and purity should be greater than 90%.Based on the cost,recovery,and purity,it seems that chemical absorption is currently the most cost-effective technology for CO2 capture from flue gas from power plants.However,membrane gas separation is the most promising alternative approach in the future,provided that membrane performance is further improved.
基金Project(2017YFC0210500)supported by the National Key Technology R&D Program of ChinaProject(2017ACA092)supported by the Major Projects of Technical Innovation in Hubei Province,China
文摘The absorbent composing of Bayer red mud and water was prepared and applied to removing SO2 from flue gas.Effects of the ratio of liquid to solid(L/S),the absorption temperature,the inlet SO2 concentration,the O2 concentration,SO4^2-and other different components of Bayer red mud on desulfurization were conducted.The mechanism of flue gas desulfurization was also established.The results indicated that L/S was the prominent factor,followed by the inlet SO2 concentration and the temperature was the least among them.The optimum condition was as follows:L/S,the temperature and the SO2 concentration were 20:1,25℃and 1000 mg/m^3,respectively,under the gas flow of 1.5 L/min.The desulfurization efficiency was not significantly influenced when O2 concentration was above 7%.The accumulation of SO4^2-inhibited the desulfurization efficiency.The alkali absorption and metal ions liquid catalytic oxidation were involved in the process,which accounted for 98.61%.