The present work reports the synthesis and application of sulfur doped into porous activated carbon for removing elemental mercury from natural gas using a bench-scale fixed-bed reactor. A series of experiments were c...The present work reports the synthesis and application of sulfur doped into porous activated carbon for removing elemental mercury from natural gas using a bench-scale fixed-bed reactor. A series of experiments were carried out to investigate the optimization of Hg0 capture. Furthermore, our experimental results about optimum conditions to remove Hg0 were 1:10 of sulfur to activated carbon impregnation ratio, 350°C of impregnation temperature, and 3 hours of impregnation time. This research showed that the prepared adsorbents were capable to remove remarkable amount of Hg0 (23.615 mg/g) at high adsorption efficiency. This study may serve as reference on natural gas power plants for the removal of Hg0 using the same conditions.展开更多
Activated carbon (AC) was considered to be an effective sorbent to control mercury in combustion systems. However, its capture capacity was low and it required a high carbon-to-mercury mass ratio. AC loaded with cat...Activated carbon (AC) was considered to be an effective sorbent to control mercury in combustion systems. However, its capture capacity was low and it required a high carbon-to-mercury mass ratio. AC loaded with catalyst showed a high elemental mercury (Hg 0 ) capture capacity due to large surface area of AC and high oxidization ability of catalyst. In this study, several metal chlorides and metal oxides were used to promote the sorption capacity of AC. As a result, metal chlorides were better than metal oxides loaded on AC to remove gaseous mercury. X-ray diffractometer (XRD), thermogravimetric analyzer (TGA) and specific surface area by Brunauer- Emmett-Teller method (BET) analysis showed the main mechanisms: first, AC had an enormous surface area for loading enough MClx; second, Cl and MxOy were generated during pyrogenation of MClx; finally, there were lots of active elements such as Cl and MxOy which could react with elemental mercury and convert it to mercury oxide and mercury chloride. The HgO and HgCl 2 might be released from AC’s porous structure by thermo regeneration. A catalytic chemisorption mechanism predominates the sorption process of elemental mercury. As Co and Mn were valence variable metal elements, their catalytic effect on Hg 0 oxidization may accelerate both oxidation and halogenation of Hg 0 . The sorbents loaded with metal chlorides possessed a synergistic function of catalytic effect of valence variable metal and chlorine oxidation.展开更多
文摘The present work reports the synthesis and application of sulfur doped into porous activated carbon for removing elemental mercury from natural gas using a bench-scale fixed-bed reactor. A series of experiments were carried out to investigate the optimization of Hg0 capture. Furthermore, our experimental results about optimum conditions to remove Hg0 were 1:10 of sulfur to activated carbon impregnation ratio, 350°C of impregnation temperature, and 3 hours of impregnation time. This research showed that the prepared adsorbents were capable to remove remarkable amount of Hg0 (23.615 mg/g) at high adsorption efficiency. This study may serve as reference on natural gas power plants for the removal of Hg0 using the same conditions.
基金supported by the National Natural Science Foundation of China(No.90510009)
文摘Activated carbon (AC) was considered to be an effective sorbent to control mercury in combustion systems. However, its capture capacity was low and it required a high carbon-to-mercury mass ratio. AC loaded with catalyst showed a high elemental mercury (Hg 0 ) capture capacity due to large surface area of AC and high oxidization ability of catalyst. In this study, several metal chlorides and metal oxides were used to promote the sorption capacity of AC. As a result, metal chlorides were better than metal oxides loaded on AC to remove gaseous mercury. X-ray diffractometer (XRD), thermogravimetric analyzer (TGA) and specific surface area by Brunauer- Emmett-Teller method (BET) analysis showed the main mechanisms: first, AC had an enormous surface area for loading enough MClx; second, Cl and MxOy were generated during pyrogenation of MClx; finally, there were lots of active elements such as Cl and MxOy which could react with elemental mercury and convert it to mercury oxide and mercury chloride. The HgO and HgCl 2 might be released from AC’s porous structure by thermo regeneration. A catalytic chemisorption mechanism predominates the sorption process of elemental mercury. As Co and Mn were valence variable metal elements, their catalytic effect on Hg 0 oxidization may accelerate both oxidation and halogenation of Hg 0 . The sorbents loaded with metal chlorides possessed a synergistic function of catalytic effect of valence variable metal and chlorine oxidation.