Based on the lightning monitoring data, automatic and routine weather station observation data in spring (March-May) of 2013 of Sichuan Province, the corresponding relationship between the spatial distribution and t...Based on the lightning monitoring data, automatic and routine weather station observation data in spring (March-May) of 2013 of Sichuan Province, the corresponding relationship between the spatial distribution and the different regions, and the characteristics of atmospheric circulation and evolution of influence the sys- tem were analyzed and summarized. The results show that: the lightning and thunderstorm showed great regional differences in the spring of 2013 in Sichuan Province and the thunderstorm activity period was not the same in different areas. Because of the change of atmospheric circulation, the influence system from March to May corresponding to the thunderstorms in Sichuan tended to be volatile, also.展开更多
Integrating photoacoustic(PA)and ultrasound(US)into a handheld probe to perform P A/US dual-modal imaging has been widely studied over the past few years.However,optical fuence decreases quickly in deeper tissue due t...Integrating photoacoustic(PA)and ultrasound(US)into a handheld probe to perform P A/US dual-modal imaging has been widely studied over the past few years.However,optical fuence decreases quickly in deeper tissue due to light scattering and absorption,which would signifi-cantly affect the quantitative PA imaging.In this paper,we performed a fluence compensation for a PA imaging study of human breast.The comparison of P A/US image with and without optical fuence compensation demonstrated that the fuence compensation could effectively improve imaging quality for handheld probe.展开更多
A case series was used to evaluate the efficacy of halffluence photodynamic therapy(PDT) for chronic central serous chorioretinopathy(CSCR). Patients were treated with standard-dose verteporfin and half-fluence PD...A case series was used to evaluate the efficacy of halffluence photodynamic therapy(PDT) for chronic central serous chorioretinopathy(CSCR). Patients were treated with standard-dose verteporfin and half-fluence PDT. Totally 13 eyes from 11 patients were included. The mean patient age was 52.0 y. There was a mean reduction in central retinal thickness of 107.0 microns. Totally 7/13 eyes(53.8%) achieved resolution of subretinal fluid(SRF) on optical coherence tomography(OCT) scan after 1 treatment with PDT. Four eyes had further treatment with PDT; of these 1 eye achieved resolution of SRF. Seven of the 13 eyes(53.8%) achieved an improvement of more than 5 ETDRS letters. One patient experienced acute macula oedema 1 d post PDT treatment. These results support the hypothesis that half-fluence PDT can have a positive effect in chronic CSCR for a gain in visual acuity and reduction in sub-retinal fluid. Acute macula oedema is a rare but potential adverse effect of half-fluence PDT.展开更多
The mean sputter depth depends on the surface composition gradient during ion implantation.For the high fluence ion implantation into a Pt-Cu alloy, the surface composition gradient of Cu is so large that the differen...The mean sputter depth depends on the surface composition gradient during ion implantation.For the high fluence ion implantation into a Pt-Cu alloy, the surface composition gradient of Cu is so large that the difference in mean sputter depth between Pt and Cu, is significant. However, for the high fluence ion implantation into 10B-11B isotope mixture, the surface composition gradient of 10B is so small that the difference in mean sputter depth between 10B and 11B is insignificant.展开更多
The influences of SSD on the beam characteristics in the near held are investigated. Results snow that it the SSD parameters are increased, the laser intensity modulation increases while fluence modulation decreases, ...The influences of SSD on the beam characteristics in the near held are investigated. Results snow that it the SSD parameters are increased, the laser intensity modulation increases while fluence modulation decreases, which is attributed to the temporal and spatial variation of the SSD pulse phase. The variations of intensity and fluence modulations with the SSD parameters are given. The simulation results are presented along with a method for choosing appropriate SSD parameters according to the variations and the requirements of applications.展开更多
The problem of determining the in vivo dosimetry for patients undergoing radiation treatment has been an area of interest since the development of the field. More recent methods of measurement employ Electronic Portal...The problem of determining the in vivo dosimetry for patients undergoing radiation treatment has been an area of interest since the development of the field. More recent methods of measurement employ Electronic Portal Image Devices (EPID), or dosimeter arrays, for entrance or exit fluence determination. The more recent methods of in vivo dosimetry make use of detector arrays and reconstruction techniques to determine dose throughout the patient volume. One method uses an array of ion chambers located upstream of the patient. This requires a special hardware device and places an additional attenuator in the beam path, which may not be desirable. An alternative to this approach is to use the existing EPID, which is part of most modern linear accelerators, to image the patient using the treatment beam. Methods exist to deconvolve the detector function of the EPID using a series of weighted exponentials [1]. Additionally, this method has been extended to the deconvolution of the patient scatter in order to determine in vivo dosimetry. The method developed here intends to use EPID images and an iterative deconvolution algorithm to reconstruct the impinging primary fluence on the patient. This primary fluence may then be employed, using treatment time volumetric imaging, to determine dose through the entire patient volume. Presented in this paper is the initial discussion of the algorithm, and a theoretical evaluation of its efficacy using montecarlo derived virtual fluence measurements. The results presented here indicate an agreement of 1% dose difference within 95% the field area receiving 10% of the entrance fluence for a set of sample highly modulated fields. These results warrant continued investigation in applying this algorithm to clinical patient treatments.展开更多
Prescriptions for radiation therapy are given in terms of dose-volume constraints (DVCs). Solving the fluence map optimization (FMO) problem while satisfying DVCs often requires a tedious trial-and-error for selecting...Prescriptions for radiation therapy are given in terms of dose-volume constraints (DVCs). Solving the fluence map optimization (FMO) problem while satisfying DVCs often requires a tedious trial-and-error for selecting appropriate dose control parameters on various organs. In this paper, we propose an iterative approach to satisfy DVCs using a multi-objective linear programming (LP) model for solving beamlet intensities. This algorithm, starting from arbitrary initial parameter values, gradually updates the values through an iterative solution process toward optimal solution. This method finds appropriate parameter values through the trade-off between OAR sparing and target coverage to improve the solution. We compared the plan quality and the satisfaction of the DVCs by the proposed algorithm with two nonlinear approaches: a nonlinear FMO model solved by using the L-BFGS algorithm and another approach solved by a commercial treatment planning system (Eclipse 8.9). We retrospectively selected from our institutional database five patients with lung cancer and one patient with prostate cancer for this study. Numerical results show that our approach successfully improved target coverage to meet the DVCs, while trying to keep corresponding OAR DVCs satisfied. The LBFGS algorithm for solving the nonlinear FMO model successfully satisfied the DVCs in three out of five test cases. However, there is no recourse in the nonlinear FMO model for correcting unsatisfied DVCs other than manually changing some parameter values through trial and error to derive a solution that more closely meets the DVC requirements. The LP-based heuristic algorithm outperformed the current treatment planning system in terms of DVC satisfaction. A major strength of the LP-based heuristic approach is that it is not sensitive to the starting condition.展开更多
Ⅰ. INTRODUCTION Critical current density J_c varies with structural imperfections in non-ideal type-Ⅱ superconductors, and it is sensitive to the defect concentration. Neutron irradiation has been established as a u...Ⅰ. INTRODUCTION Critical current density J_c varies with structural imperfections in non-ideal type-Ⅱ superconductors, and it is sensitive to the defect concentration. Neutron irradiation has been established as a useful tool to increase the defect concentration in superconducting materials. Many experiments have shown that neutron irradiation at a suitable fluence would展开更多
Fluence rate(FR) distribution(optical field) is of great significance in the optimal design of ultraviolet(UV) reactors for disinfection or oxidation processes in water treatment. Since the1970 s, various simulation m...Fluence rate(FR) distribution(optical field) is of great significance in the optimal design of ultraviolet(UV) reactors for disinfection or oxidation processes in water treatment. Since the1970 s, various simulation models have been developed, which can be combined with computational fluidic dynamic software to calculate the fluence delivered in a UV reactor. These models strive for experimental validation and further improvement, which is a major challenge for UV technology in water treatment. Herein, a review of the simulation models of the FR distribution in a UV reactor and the applications of the current main experimental measurement approaches including conventional flat-type UV detector, spherical actinometer,and micro-fluorescent silica detector(MFSD), is presented. Moreover, FR distributions in a UV reactor are compared between various simulation models and MFSD measurements.In addition, the main influential factors on the FR distribution, including inner-wall reflection, refraction and shadowing effects of adjacent lamps, and turbidity effect are discussed,which is helpful for improving the accuracy of the simulation models and avoiding dark regions in the reactor design. This paper provides an overview on the simulation models and measurement approaches for the FR distribution, which is helpful for the model selection in fluence calculations and gives high confidence on the optimal design of UV reactors in regard to present methods.展开更多
Scintillation detectors based on LSO, CeF and PbWO are the main candidates for measuring T- rays in a mixed γ/n pulsed radiation field with high intensity. An experiment using the Lissajous figure method to study the...Scintillation detectors based on LSO, CeF and PbWO are the main candidates for measuring T- rays in a mixed γ/n pulsed radiation field with high intensity. An experiment using the Lissajous figure method to study the high fluence rate response behavior of three kinds of commonly used scintillators is introduced in this paper. The result shows that the fluence rate linear response limit of LSO and CeF is 1.9×10^19 and 2.1 × 10^18MeV/(cm^2·s), respectively, and the PbWO scintillator still maintains linear response when the fluence rate of T-ray is up to 2.0×10^20 MeV/(cm^2·s).展开更多
Age determination using the fission track technique depends upon the accurate neutron fluence and the fission cross section value of <sup>235</sup>U. The neutron fluence determined commonly by Au and Co mo...Age determination using the fission track technique depends upon the accurate neutron fluence and the fission cross section value of <sup>235</sup>U. The neutron fluence determined commonly by Au and Co monitors or the B value(ψ=BP<sub>d</sub>, ψ=thermal fluence; p<sub>d</sub>=induced fission track density in uranium standard dosimetric glass after neutron irradiation)of展开更多
Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent ...Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent on gate voltage.For the devices with thicker oxides,saturated drain current degradation has a close relationship with the product of gate current and electron fluence.For small dimensional devices,saturated drain current degradation has a close relationship with the electron fluence.This degradation model is valid for p MOSFETs with 0 25μm channel length and different gate oxide thicknesses.展开更多
High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or micro...High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm^2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser(pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz)in liquids(water and acetone)at laser fluence of 1.7 J/cm^2.The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds(0.1,0.5,1 and 2 mm/s),line intervals(5,15 and 20μm)of scanning lines and scanning directions(perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50°as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons(SPP)and second-harmonic generation(SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.展开更多
Several neutrino observatories have searched for coincident neutrino signals associated with gravitational waves induced by the merging of two black holes. No statistically significant neutrino signal in excess of the...Several neutrino observatories have searched for coincident neutrino signals associated with gravitational waves induced by the merging of two black holes. No statistically significant neutrino signal in excess of the background level was observed. These experiments use different neutrino detection technologies and are sensitive to various neutrino types. A combined analysis was performed on the KamLAND, Super-Kamiokande and Borexino experimental data with a frequentist statistical approach to achieve a global picture of the associated neutrino fluence. Both monochromatic and Fermi-Dirac neutrino spectra were assumed in the calculation. The final results are consistent with null neutrino signals associated with the process of a binary black hole merger. The derived 90% confidence level upper limits on the fluence and luminosity of various neutrino types are presented for neutrino energy less than110 MeV.展开更多
An intense 14 MeV neutron source facility named OKTAVIAN was installed in the A15 building,Osaka University in 1981.Along the operation period,new radioisotopes with various half-life have been produced as neutron act...An intense 14 MeV neutron source facility named OKTAVIAN was installed in the A15 building,Osaka University in 1981.Along the operation period,new radioisotopes with various half-life have been produced as neutron activation products in its concrete wall shield.In this work,we investigated the concrete wall in the heavy irradiation room of OKTAVIAN using gamma spectrometry method to discover the presence of radioisotope having large half-life value(long-lived radioisotope)as neutron activation products.Computational simulations were performed prior to measurement to predict the presence of long-lived radioisotopes by employing MCNP5 and FISPACT codes.A pre-calibrated Germanium detector with high energy resolution was employed to measure the concrete.Several long-lived activation products have been observed such as 152 Eu,54 Mn,65 Zn,22 Na and 60 Co.The activity of each radioisotope was derived after estimating the detector efficiency using MCNP5.As a result of the measurement and analysis,the followings are concluded:(1)Though presence of activation products represents radiological risk to everyone who performs an experimental activity in the irradiation room of the OKTAVIAN facility,the present result shows that past experiments were carried out safely without any significant additional exposure dose coming from the wall for the last 38 years.(2)The approximated total fluence of D-T neutrons to the wall was successfully estimated from the produced radioisotope,152 Eu,because it has the longest half-life of 13.5 years among the observed radioisotopes.(3)From the results of(1)and(2),it could be possible to estimate the total activity of the concrete wall in the OKTAVIAN facility,which is very essential and important information,because this would be very valuable for decommissioning or disposal of the facility in the future.展开更多
The study of radiation damage of high- molecular weight substances due to MeV ion interactions is of interest for engineering and scientific applications. In the present study polystyrene (PS) was irradiated with 107A...The study of radiation damage of high- molecular weight substances due to MeV ion interactions is of interest for engineering and scientific applications. In the present study polystyrene (PS) was irradiated with 107Ag ions of three different charge states (q) 11+, 14+ and 25+ and of 130 MeV energy. The emission of hydrogen from PS was monitored as a function of the incident ion fluence. The experimental results showed that the hydrogen depletion per incident ion from PS varies as qn, where n was found to be 2.1 as compared to the value 2.7 to 3.0 reported in the literature. Radii of the nanometric damaged zones or ion tracks formed were analyzed from the slope of the hydrogen depletion versus ion fluence curves as a function of charge state of incident ion. These have values between 3.2 - 6.8 nm. These radii were found to depend upon the charge state of the incident ion and vary as qm, where m has the value 0.9.展开更多
Accurate neutron flux values in irradiation channels of research reactors are very essential to their usage. The total neutron flux of the Ghana Research Reactor-1(GHARR-1) was measured after a beryllium reflector was...Accurate neutron flux values in irradiation channels of research reactors are very essential to their usage. The total neutron flux of the Ghana Research Reactor-1(GHARR-1) was measured after a beryllium reflector was added to its shim to compensate for excess reactivity loss. The thermal, epithermal and fast neutron fluxes were determined by the method of foil activation. The experimental samples with and without a cadmium cover of 1-mm thickness were irradiated in the isotropic neutron field of the irradiation sites of Ghana Research Reactor-1 facility. The induced activities in the sample were measured by gamma ray spectrometry with a high purity germanium detector. The necessary correction for gamma attenuation, thermal neutrons and resonance neutron self-shielding effects were taken into account during the experimental analysis. By defining cadmium cutoff energy of 0.55eV, Al-0.1% Au wires of negligible thickness were irradiated at 3kW to determine the neutron fluxes of two irradiation channels, outer channel 7 and inner channel 2 whose Neutron Shaping Factor (α) were found to be (0.037 ± 0.001) and (–0.961 ± 0.034). The neutron flux ratios at the inner irradiation site 2 were found to be, (25.308 ± 3.201) for thermal to epithermal neutrons flux, (0.179 ± 0.021) for epithermal to fast neutrons flux and (4.528 ± 0.524) for thermal to fast neutrons flux, in the outer irradiation site 7, the neutron flux ratios were found to be, (40.865 ± 3.622) for thermal to epithermal neutrons flux, (0.286 ± 0.025) for epithermal to fast neutrons flux and (11.680 ± 1.030) for thermal to fast neutrons flux.展开更多
We investigate the effects of 2 MeV Ni+ ion beam irradiation with various fluence ranging from 15 × 1011 to 60 × 1014 ions/cm2 on the surface, structural and mechanical properties of Cu-Zn alloy. The modific...We investigate the effects of 2 MeV Ni+ ion beam irradiation with various fluence ranging from 15 × 1011 to 60 × 1014 ions/cm2 on the surface, structural and mechanical properties of Cu-Zn alloy. The modification in target properties after irradiation is confirmed by using various characterization techniques viz. SEM, XRD, UTM and Vickers micro-hardness tester. The SEM results illustrate the formation of nano sized craters with different diameters. Their average diameter decreases from 190 nm to 90 nm by increasing ion fluence. The XRD analysis of irradiated targets reveals that Ni+ ion irradiation enhances the growth of (111) phase and its peak position varies due to ion induced tensile stresses in target matrix. Tensile and Vickers micro-hardness tests verify the mechanical properties of Cu-Zn alloy reduce monotonically upon irradiation. Various mechanisms such as generation, recombination, augmentation and annihilation of ion induced defects are responsible for this reduction. Understanding the relationships between various modified properties of irradiated target is essential for growing new advanced material by irradiation.展开更多
Dwarf Water Lilies Nymphoides aquatica(J.F.Gmel)Kuntze have floating and submerged leaves.Some submerged aquatic vascular plants have a form of CAM(Crassulacean Acid Metabolism)called Submerged Aquatic Macrophyte(SAM)...Dwarf Water Lilies Nymphoides aquatica(J.F.Gmel)Kuntze have floating and submerged leaves.Some submerged aquatic vascular plants have a form of CAM(Crassulacean Acid Metabolism)called Submerged Aquatic Macrophyte(SAM)metabolism.Blue-diode based PAM technology was used to measure the Photosynthetic Oxygen Evolution Rate(POER:1O_(2)≡4e^(-)).Optimum Irradiance(E_(opt)),maximum POER(POER_(max))and quantum efficiency(α_(0))all vary on a diurnal cycle.The shape of the POER vs.E curves is different in seedling,submerged and surface leaves.Both E_(opt) and POER_(max) are very low in seedling leaves(E_(opt)≈104μmol photon m^(-2) s^(-1),PPFD;POER_(max)≈4.95µmol O_(2) g^(-1) Chl a s^(-1)),intermediate in mature submerged leaves(E_(opt)≈419µmol photon m^(-2) s^(-1) PPFD,POER_(max)≈38.1µmol O_(2) g^(-1) Chl a s^(-1))and very high in surface leaves(E_(opt)≈923µmol photon m^(-2) s^(-1) PPFD,POER_(max)≈76.1µmol O_(2) g^(-1) Chl a s^(-1)).Leaf titratable acid(C4 acid pool)is too small(≈20 to 50 mol H+m^(-3))to support substantial SAM metabolism.Gross daily photosynthesis of surface leaves is≈3.71 g C m^(-2) d^(-1) in full sun and as much as 1.4 gC m^(-2) d^(-1) in shaded submerged leaves.There is midday inhibition of photosynthesis.展开更多
文摘Based on the lightning monitoring data, automatic and routine weather station observation data in spring (March-May) of 2013 of Sichuan Province, the corresponding relationship between the spatial distribution and the different regions, and the characteristics of atmospheric circulation and evolution of influence the sys- tem were analyzed and summarized. The results show that: the lightning and thunderstorm showed great regional differences in the spring of 2013 in Sichuan Province and the thunderstorm activity period was not the same in different areas. Because of the change of atmospheric circulation, the influence system from March to May corresponding to the thunderstorms in Sichuan tended to be volatile, also.
基金International S&T Cooperation Program of China(2015DFA30440)National Natural Science Foundation of China(81301268,81421004)+1 种基金Beijing Nova Program(Z131107000413063)The National Key Instrumentation Development Project(2013YQ030651)。
文摘Integrating photoacoustic(PA)and ultrasound(US)into a handheld probe to perform P A/US dual-modal imaging has been widely studied over the past few years.However,optical fuence decreases quickly in deeper tissue due to light scattering and absorption,which would signifi-cantly affect the quantitative PA imaging.In this paper,we performed a fluence compensation for a PA imaging study of human breast.The comparison of P A/US image with and without optical fuence compensation demonstrated that the fuence compensation could effectively improve imaging quality for handheld probe.
文摘A case series was used to evaluate the efficacy of halffluence photodynamic therapy(PDT) for chronic central serous chorioretinopathy(CSCR). Patients were treated with standard-dose verteporfin and half-fluence PDT. Totally 13 eyes from 11 patients were included. The mean patient age was 52.0 y. There was a mean reduction in central retinal thickness of 107.0 microns. Totally 7/13 eyes(53.8%) achieved resolution of subretinal fluid(SRF) on optical coherence tomography(OCT) scan after 1 treatment with PDT. Four eyes had further treatment with PDT; of these 1 eye achieved resolution of SRF. Seven of the 13 eyes(53.8%) achieved an improvement of more than 5 ETDRS letters. One patient experienced acute macula oedema 1 d post PDT treatment. These results support the hypothesis that half-fluence PDT can have a positive effect in chronic CSCR for a gain in visual acuity and reduction in sub-retinal fluid. Acute macula oedema is a rare but potential adverse effect of half-fluence PDT.
文摘The mean sputter depth depends on the surface composition gradient during ion implantation.For the high fluence ion implantation into a Pt-Cu alloy, the surface composition gradient of Cu is so large that the difference in mean sputter depth between Pt and Cu, is significant. However, for the high fluence ion implantation into 10B-11B isotope mixture, the surface composition gradient of 10B is so small that the difference in mean sputter depth between 10B and 11B is insignificant.
基金Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No.61138005)the National Natural Science Foundation of China (Grant No.61008005)
文摘The influences of SSD on the beam characteristics in the near held are investigated. Results snow that it the SSD parameters are increased, the laser intensity modulation increases while fluence modulation decreases, which is attributed to the temporal and spatial variation of the SSD pulse phase. The variations of intensity and fluence modulations with the SSD parameters are given. The simulation results are presented along with a method for choosing appropriate SSD parameters according to the variations and the requirements of applications.
文摘The problem of determining the in vivo dosimetry for patients undergoing radiation treatment has been an area of interest since the development of the field. More recent methods of measurement employ Electronic Portal Image Devices (EPID), or dosimeter arrays, for entrance or exit fluence determination. The more recent methods of in vivo dosimetry make use of detector arrays and reconstruction techniques to determine dose throughout the patient volume. One method uses an array of ion chambers located upstream of the patient. This requires a special hardware device and places an additional attenuator in the beam path, which may not be desirable. An alternative to this approach is to use the existing EPID, which is part of most modern linear accelerators, to image the patient using the treatment beam. Methods exist to deconvolve the detector function of the EPID using a series of weighted exponentials [1]. Additionally, this method has been extended to the deconvolution of the patient scatter in order to determine in vivo dosimetry. The method developed here intends to use EPID images and an iterative deconvolution algorithm to reconstruct the impinging primary fluence on the patient. This primary fluence may then be employed, using treatment time volumetric imaging, to determine dose through the entire patient volume. Presented in this paper is the initial discussion of the algorithm, and a theoretical evaluation of its efficacy using montecarlo derived virtual fluence measurements. The results presented here indicate an agreement of 1% dose difference within 95% the field area receiving 10% of the entrance fluence for a set of sample highly modulated fields. These results warrant continued investigation in applying this algorithm to clinical patient treatments.
文摘Prescriptions for radiation therapy are given in terms of dose-volume constraints (DVCs). Solving the fluence map optimization (FMO) problem while satisfying DVCs often requires a tedious trial-and-error for selecting appropriate dose control parameters on various organs. In this paper, we propose an iterative approach to satisfy DVCs using a multi-objective linear programming (LP) model for solving beamlet intensities. This algorithm, starting from arbitrary initial parameter values, gradually updates the values through an iterative solution process toward optimal solution. This method finds appropriate parameter values through the trade-off between OAR sparing and target coverage to improve the solution. We compared the plan quality and the satisfaction of the DVCs by the proposed algorithm with two nonlinear approaches: a nonlinear FMO model solved by using the L-BFGS algorithm and another approach solved by a commercial treatment planning system (Eclipse 8.9). We retrospectively selected from our institutional database five patients with lung cancer and one patient with prostate cancer for this study. Numerical results show that our approach successfully improved target coverage to meet the DVCs, while trying to keep corresponding OAR DVCs satisfied. The LBFGS algorithm for solving the nonlinear FMO model successfully satisfied the DVCs in three out of five test cases. However, there is no recourse in the nonlinear FMO model for correcting unsatisfied DVCs other than manually changing some parameter values through trial and error to derive a solution that more closely meets the DVC requirements. The LP-based heuristic algorithm outperformed the current treatment planning system in terms of DVC satisfaction. A major strength of the LP-based heuristic approach is that it is not sensitive to the starting condition.
基金Project supported by the National Center for Research and Development on Superconductivity
文摘Ⅰ. INTRODUCTION Critical current density J_c varies with structural imperfections in non-ideal type-Ⅱ superconductors, and it is sensitive to the defect concentration. Neutron irradiation has been established as a useful tool to increase the defect concentration in superconducting materials. Many experiments have shown that neutron irradiation at a suitable fluence would
基金supported by the National Natural Science Foundation of China (Nos. 51878653, 21590814)the Youth Innovation Promotion Association of Chinese Academy of Sciences。
文摘Fluence rate(FR) distribution(optical field) is of great significance in the optimal design of ultraviolet(UV) reactors for disinfection or oxidation processes in water treatment. Since the1970 s, various simulation models have been developed, which can be combined with computational fluidic dynamic software to calculate the fluence delivered in a UV reactor. These models strive for experimental validation and further improvement, which is a major challenge for UV technology in water treatment. Herein, a review of the simulation models of the FR distribution in a UV reactor and the applications of the current main experimental measurement approaches including conventional flat-type UV detector, spherical actinometer,and micro-fluorescent silica detector(MFSD), is presented. Moreover, FR distributions in a UV reactor are compared between various simulation models and MFSD measurements.In addition, the main influential factors on the FR distribution, including inner-wall reflection, refraction and shadowing effects of adjacent lamps, and turbidity effect are discussed,which is helpful for improving the accuracy of the simulation models and avoiding dark regions in the reactor design. This paper provides an overview on the simulation models and measurement approaches for the FR distribution, which is helpful for the model selection in fluence calculations and gives high confidence on the optimal design of UV reactors in regard to present methods.
文摘Scintillation detectors based on LSO, CeF and PbWO are the main candidates for measuring T- rays in a mixed γ/n pulsed radiation field with high intensity. An experiment using the Lissajous figure method to study the high fluence rate response behavior of three kinds of commonly used scintillators is introduced in this paper. The result shows that the fluence rate linear response limit of LSO and CeF is 1.9×10^19 and 2.1 × 10^18MeV/(cm^2·s), respectively, and the PbWO scintillator still maintains linear response when the fluence rate of T-ray is up to 2.0×10^20 MeV/(cm^2·s).
文摘Age determination using the fission track technique depends upon the accurate neutron fluence and the fission cross section value of <sup>235</sup>U. The neutron fluence determined commonly by Au and Co monitors or the B value(ψ=BP<sub>d</sub>, ψ=thermal fluence; p<sub>d</sub>=induced fission track density in uranium standard dosimetric glass after neutron irradiation)of
文摘Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent on gate voltage.For the devices with thicker oxides,saturated drain current degradation has a close relationship with the product of gate current and electron fluence.For small dimensional devices,saturated drain current degradation has a close relationship with the electron fluence.This degradation model is valid for p MOSFETs with 0 25μm channel length and different gate oxide thicknesses.
文摘High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm^2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser(pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz)in liquids(water and acetone)at laser fluence of 1.7 J/cm^2.The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds(0.1,0.5,1 and 2 mm/s),line intervals(5,15 and 20μm)of scanning lines and scanning directions(perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50°as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons(SPP)and second-harmonic generation(SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.
基金funded by the National Natural Science Foundation of China (Grant No. 11080922)
文摘Several neutrino observatories have searched for coincident neutrino signals associated with gravitational waves induced by the merging of two black holes. No statistically significant neutrino signal in excess of the background level was observed. These experiments use different neutrino detection technologies and are sensitive to various neutrino types. A combined analysis was performed on the KamLAND, Super-Kamiokande and Borexino experimental data with a frequentist statistical approach to achieve a global picture of the associated neutrino fluence. Both monochromatic and Fermi-Dirac neutrino spectra were assumed in the calculation. The final results are consistent with null neutrino signals associated with the process of a binary black hole merger. The derived 90% confidence level upper limits on the fluence and luminosity of various neutrino types are presented for neutrino energy less than110 MeV.
文摘An intense 14 MeV neutron source facility named OKTAVIAN was installed in the A15 building,Osaka University in 1981.Along the operation period,new radioisotopes with various half-life have been produced as neutron activation products in its concrete wall shield.In this work,we investigated the concrete wall in the heavy irradiation room of OKTAVIAN using gamma spectrometry method to discover the presence of radioisotope having large half-life value(long-lived radioisotope)as neutron activation products.Computational simulations were performed prior to measurement to predict the presence of long-lived radioisotopes by employing MCNP5 and FISPACT codes.A pre-calibrated Germanium detector with high energy resolution was employed to measure the concrete.Several long-lived activation products have been observed such as 152 Eu,54 Mn,65 Zn,22 Na and 60 Co.The activity of each radioisotope was derived after estimating the detector efficiency using MCNP5.As a result of the measurement and analysis,the followings are concluded:(1)Though presence of activation products represents radiological risk to everyone who performs an experimental activity in the irradiation room of the OKTAVIAN facility,the present result shows that past experiments were carried out safely without any significant additional exposure dose coming from the wall for the last 38 years.(2)The approximated total fluence of D-T neutrons to the wall was successfully estimated from the produced radioisotope,152 Eu,because it has the longest half-life of 13.5 years among the observed radioisotopes.(3)From the results of(1)and(2),it could be possible to estimate the total activity of the concrete wall in the OKTAVIAN facility,which is very essential and important information,because this would be very valuable for decommissioning or disposal of the facility in the future.
文摘The study of radiation damage of high- molecular weight substances due to MeV ion interactions is of interest for engineering and scientific applications. In the present study polystyrene (PS) was irradiated with 107Ag ions of three different charge states (q) 11+, 14+ and 25+ and of 130 MeV energy. The emission of hydrogen from PS was monitored as a function of the incident ion fluence. The experimental results showed that the hydrogen depletion per incident ion from PS varies as qn, where n was found to be 2.1 as compared to the value 2.7 to 3.0 reported in the literature. Radii of the nanometric damaged zones or ion tracks formed were analyzed from the slope of the hydrogen depletion versus ion fluence curves as a function of charge state of incident ion. These have values between 3.2 - 6.8 nm. These radii were found to depend upon the charge state of the incident ion and vary as qm, where m has the value 0.9.
文摘Accurate neutron flux values in irradiation channels of research reactors are very essential to their usage. The total neutron flux of the Ghana Research Reactor-1(GHARR-1) was measured after a beryllium reflector was added to its shim to compensate for excess reactivity loss. The thermal, epithermal and fast neutron fluxes were determined by the method of foil activation. The experimental samples with and without a cadmium cover of 1-mm thickness were irradiated in the isotropic neutron field of the irradiation sites of Ghana Research Reactor-1 facility. The induced activities in the sample were measured by gamma ray spectrometry with a high purity germanium detector. The necessary correction for gamma attenuation, thermal neutrons and resonance neutron self-shielding effects were taken into account during the experimental analysis. By defining cadmium cutoff energy of 0.55eV, Al-0.1% Au wires of negligible thickness were irradiated at 3kW to determine the neutron fluxes of two irradiation channels, outer channel 7 and inner channel 2 whose Neutron Shaping Factor (α) were found to be (0.037 ± 0.001) and (–0.961 ± 0.034). The neutron flux ratios at the inner irradiation site 2 were found to be, (25.308 ± 3.201) for thermal to epithermal neutrons flux, (0.179 ± 0.021) for epithermal to fast neutrons flux and (4.528 ± 0.524) for thermal to fast neutrons flux, in the outer irradiation site 7, the neutron flux ratios were found to be, (40.865 ± 3.622) for thermal to epithermal neutrons flux, (0.286 ± 0.025) for epithermal to fast neutrons flux and (11.680 ± 1.030) for thermal to fast neutrons flux.
文摘We investigate the effects of 2 MeV Ni+ ion beam irradiation with various fluence ranging from 15 × 1011 to 60 × 1014 ions/cm2 on the surface, structural and mechanical properties of Cu-Zn alloy. The modification in target properties after irradiation is confirmed by using various characterization techniques viz. SEM, XRD, UTM and Vickers micro-hardness tester. The SEM results illustrate the formation of nano sized craters with different diameters. Their average diameter decreases from 190 nm to 90 nm by increasing ion fluence. The XRD analysis of irradiated targets reveals that Ni+ ion irradiation enhances the growth of (111) phase and its peak position varies due to ion induced tensile stresses in target matrix. Tensile and Vickers micro-hardness tests verify the mechanical properties of Cu-Zn alloy reduce monotonically upon irradiation. Various mechanisms such as generation, recombination, augmentation and annihilation of ion induced defects are responsible for this reduction. Understanding the relationships between various modified properties of irradiated target is essential for growing new advanced material by irradiation.
文摘Dwarf Water Lilies Nymphoides aquatica(J.F.Gmel)Kuntze have floating and submerged leaves.Some submerged aquatic vascular plants have a form of CAM(Crassulacean Acid Metabolism)called Submerged Aquatic Macrophyte(SAM)metabolism.Blue-diode based PAM technology was used to measure the Photosynthetic Oxygen Evolution Rate(POER:1O_(2)≡4e^(-)).Optimum Irradiance(E_(opt)),maximum POER(POER_(max))and quantum efficiency(α_(0))all vary on a diurnal cycle.The shape of the POER vs.E curves is different in seedling,submerged and surface leaves.Both E_(opt) and POER_(max) are very low in seedling leaves(E_(opt)≈104μmol photon m^(-2) s^(-1),PPFD;POER_(max)≈4.95µmol O_(2) g^(-1) Chl a s^(-1)),intermediate in mature submerged leaves(E_(opt)≈419µmol photon m^(-2) s^(-1) PPFD,POER_(max)≈38.1µmol O_(2) g^(-1) Chl a s^(-1))and very high in surface leaves(E_(opt)≈923µmol photon m^(-2) s^(-1) PPFD,POER_(max)≈76.1µmol O_(2) g^(-1) Chl a s^(-1)).Leaf titratable acid(C4 acid pool)is too small(≈20 to 50 mol H+m^(-3))to support substantial SAM metabolism.Gross daily photosynthesis of surface leaves is≈3.71 g C m^(-2) d^(-1) in full sun and as much as 1.4 gC m^(-2) d^(-1) in shaded submerged leaves.There is midday inhibition of photosynthesis.