期刊文献+
共找到3,613篇文章
< 1 2 181 >
每页显示 20 50 100
Numerical Study on the Aerodynamic and Fluid−Structure Interaction of An NREL-5MW Wind Turbine
1
作者 ZHAO Mi YU Wan-li +2 位作者 WANG Pi-guang QU Yang DU Xiu-li 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期363-378,共16页
A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ... A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model. 展开更多
关键词 computational fluid dynamics methods(CFD) tower shadow effect aerodynamic performance fluidstructure interaction space flow field
下载PDF
Dynamic Analysis of Tension Leg Platform for Offshore Wind Turbine Support as Fluid-Structure Interaction 被引量:6
2
作者 黄虎 张社荣 《China Ocean Engineering》 SCIE EI 2011年第1期123-131,共9页
Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is used in analyzing the coupled model, and the dynamic characteristics ... Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is used in analyzing the coupled model, and the dynamic characteristics of the TLP for offshore wind turbine support are recognized. As shown by the calculated results: for the lower modes, the shapes are water's vibration, and the vibration of water induces the structure's swing; the mode shapes of the structure are complex, and can largely change among different members; the mode shapes of the platform are related to the tower's. The frequencies of the structure do not change much after adjusting the length of the tension cables and the depth of the platform; the TLP has good adaptability for the water depths and the environment loads. The change of the size and parameters of TLP can improve the dynamic characteristics, which can reduce the vibration of the TLP caused by the loads. Through the vibration analysis, the natural vibration frequencies of TLP can be distinguished from the frequencies of condition loads, and thus the resonance vibration can be avoided, therefore the offshore wind turbine can work normally in the complex conditions. 展开更多
关键词 offshore wind turbine tension leg platform fluid structure interaction dynamic characteristics yaw resonance vibration
下载PDF
Patient-Specific Echo-Based Fluid-Structure Interaction Modeling Study of Blood Flow in the Left Ventricle with Infarction and Hypertension 被引量:2
3
作者 Longling Fan Jing Yao +2 位作者 Chun Yang Di Xu Dalin Tang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第2期221-237,共17页
Understanding cardiac blood flow behaviors is of importance for cardiovascular research and clinical assessment of ventricle functions.Patient-specific Echo-based left ventricle(LV)fluid-structure interaction(FSI)mode... Understanding cardiac blood flow behaviors is of importance for cardiovascular research and clinical assessment of ventricle functions.Patient-specific Echo-based left ventricle(LV)fluid-structure interaction(FSI)models were introduced to perform ventricle mechanical analysis,investigate flow behaviors,and evaluate the impact of myocardial infarction(MI)and hypertension on blood flow in the LV.Echo image data were acquired from 3 patients with consent obtained:one healthy volunteer(P1),one hypertension patient(P2),and one patient who had an inferior and posterior myocardial infarction(P3).The nonlinear Mooney-Rivlin model was used for ventricle tissue with material parameter values chosen to match echo-measure LV volume data.Using the healthy case as baseline,LV with MI had lower peak flow velocity(30%lower at beginejection)and hypertension LV had higher peak flow velocity(16%higher at begin-filling).The vortex area(defined as the area with vorticity>0)for P3 was 19%smaller than that of P1.The vortex area for P2 was 12%smaller than that of P1.At peak of filling,the maximum flow shear stress(FSS)for P2 and P3 were 390%higher and 63%lower than that of P1,respectively.Meanwhile,LV stress and strain of P2 were 41%and 15%higher than those of P1,respectively.LV stress and strain of P3 were 36%and 42%lower than those of P1,respectively.In conclusion,FSI models could provide both flow and structural stress/strain information which would serve as the base for further cardiovascular investigations related to disease initiation,progression,and treatment strategy selections.Large-scale studies are needed to validate our findings. 展开更多
关键词 fluid-structure interaction model VENTRICLE flow fluid dynamic VENTRICLE material properties VENTRICLE mechanics
下载PDF
NUMERICAL SOLUTION OF FLUID-STRUCTURE INTERACTION IN LIQUID-FILLED PIPES BY METHOD OF CHARACTERISTICS 被引量:5
4
作者 YANG Chao YI Menglin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期44-49,共6页
Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenome... Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenomenon of FSI due to friction coupling and Poisson coupling being taken into account, is utilized to describe the FSI of fluid-filled pipe system. Terse compatibility equations are educed by the method of characteristics (MOC) to describe the fluid-filled pipe system. To shorten computing time needed to get the solutions under the condition of keeping accuracy requirement, two steps are adopted, firstly the time step Δt and divided number of the straight pipe are optimized, sec-ondly the mesh spacing Δz close to boundary is subdivided in several submeshes automatically ac-cording to the speed gradient of fluid. The mathematical model and arithmetic are validated by com-parisons between simulation solutions of two straight pipe systems and experiment known from lit-erature. 展开更多
关键词 fluid-structure interaction Method of characteristics COUPLING fluid-filled pipe system OPTIMIZATION
下载PDF
An improved algorithm for fluid-structure interaction of high-speed trains under crosswind 被引量:29
5
作者 Tian LI Jiye ZHANG Weihua ZHANG 《Journal of Modern Transportation》 2011年第2期75-81,共7页
Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication ... Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication between fluid solver and structure solver is avoided by inserting the program of train-track coupling dynamics into fluid dynamics program, and the relaxation factor concerning the load boundary of the fluid-structure interface is introduced to improve the fluctuation and convergence of aerodynamic forces. With this method, the fluid-structure dynamics of a highspeed train are simulated under the condition that the velocity of crosswind is 13.8 m/s and the train speed is 350 km/h. When the relaxation factor equals 0.5, the fluctuation of aerodynamic forces is lower and its convergence is faster than in other cases. The side force and lateral displacement of the head train are compared between off-line simulation and co-simulation. Simulation results show that the fluid-structure interaction has a significant influence on the aerodynam- ics and attitude of the head train under crosswind conditions. In addition, the security indexes of the head train worsen after the fluid-structure interaction calculation. Therefore, the fluid-structure interaction calculation is necessary for high-speed trains. 展开更多
关键词 high-speed train fluid-structure interaction CROSSWIND AERODYNAMICS relaxation factor
下载PDF
Hybrid algorithm for modeling of fluid-structure interaction in incompressible, viscous flows 被引量:6
6
作者 Eun Jung Chae Deniz Tolga Akcabay 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第4期1030-1041,共12页
The objective of this paper is to present and to validate a new hybrid coupling (HC) algorithm for modeling of fluid-structure interaction (FSI) in incompressible, viscous flows. The HC algorithm is able to avoid ... The objective of this paper is to present and to validate a new hybrid coupling (HC) algorithm for modeling of fluid-structure interaction (FSI) in incompressible, viscous flows. The HC algorithm is able to avoid numerical instability issues associated with artificial added mass effects, which are often encountered by standard loosely coupled (LC) and tightly coupled (TC) algorithms, when modeling the FSI response of flexible structures in incompressible flow. The artificial added mass effect is caused by the lag in exchange of interfacial displacements and forces between the fluid and solid solvers in partitioned algorithms. The artificial added mass effect is much more prominent for light/flexible struc- tures moving in water, because the fluid forces are in the same order of magnitude as the solid forces, and because the speed at which numerical errors propagate in an incom- pressible fluid. The new HC algorithm avoids numerical instability issues associated with artificial added mass effects by embedding Theodorsen's analytical approximation of the hydroelastic forces in the solution process to obtain better initial estimates of the displacements. Details of the new HC algorithm are presented. Numerical validation studies are shown for the forced pitching response of a steel and a plastic hydrofoil. The results show that the HC algorithm is able to converge faster, and is able to avoid numerical insta- bility issues, compared to standard LC and TC algorithms, when modeling the transient FSI response of a plastic hydrofoil. Although the HC algorithm is only demonstrated for a NACA0009 hydrofoil subject to pure pitching motion, the method can be easily extended to model general 3-D FSI response and stability of complex, flexible structures in turbulent, incompressible, multiphase flows. 展开更多
关键词 fluid-structure interaction VISCOUS Incom- pressible COMPUTATIONAL Added Mass STABILITY
下载PDF
Fluid-structure interaction simulation of three-dimensional flexible hydrofoil in water tunnel 被引量:6
7
作者 Shiliang HU Chuanjing LU Yousheng HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第1期15-26,共12页
The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional can... The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional cantilevered hydrofoil in the water tunnel. The FVM solver and the coupled approach are verified and validated by compar- ing the numerical predictions with the experimental measurements, and good agreement is obtained concerning both the lift on the foil and the tip displacement. In the noncav- itating flow, the result indicates that the growth of the initial incidence angle and the Reynolds number improves the deformation of the foil, and the lift on the foil is increased by the twist deformation. The normalized twist angle and displacement along the span of the hydrofoil for different incidence angles and Reynolds numbers are almost uniform. For the cavitation flow, it is shown that the small amplitude vibration of the foil has limited influence on the developing process of the partial cavity, and the quasi two-dimensional cavity shedding does not change the deformation mode of the hydrofoil. However, the frequency spectrum of the lift on the foil contains the frequency which is associated with the first bend frequency of the hydrofoil. 展开更多
关键词 closely coupled approach fluid-structure interaction (FSI) hydrofoil cavitation
下载PDF
3D numerical simulation on fluid-structure interaction of structure subjected to underwater explosion with cavitation 被引量:4
8
作者 张阿漫 任少飞 +1 位作者 李青 李佳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第9期1191-1206,共16页
In the underwater-shock environment, cavitation occurs near the structural surface. The dynamic response of fluid-structure interactions is influenced seriously by the cavitation effects. It is also the difficulty in ... In the underwater-shock environment, cavitation occurs near the structural surface. The dynamic response of fluid-structure interactions is influenced seriously by the cavitation effects. It is also the difficulty in the field of underwater explosion. With the traditional boundary element method and the finite element method (FEM), it is difficult to solve the nonlinear problem with cavitation effects subjected to the underwater explosion. To solve this problem, under the consideration of the cavitation effects and fluid compressibility, with fluid viscidity being neglected, a 3D numerical model of transient nonlinear fluid-structure interaction subjected to the underwater explosion is built. The fluid spectral element method (SEM) and the FEM are adopted to solve this model. After comparison with the FEM, it is shown that the SEM is more precise than the FEM, and the SEM results are in good coincidence with benchmark results and experiment results. Based on this, combined with ABAQUS, the transient fluid-structure interaction mechanism of the 3D submerged spherical shell and ship stiffened plates subjected to the underwater explosion is discussed, and the cavitation region and its influence on the structural dynamic responses are presented. The paper aims at providing references for relevant research on transient fluid-structure interaction of ship structures subjected to the underwater explosion. 展开更多
关键词 underwater explosion spectral element method (SEM) fluid-structure interaction CAVITATION stiffened plate
下载PDF
Effects of renal artery stenosis on realistic model of abdominalaorta and renal arteries incorporating fluid-structureinteraction and pulsatile non-Newtonian blood flow 被引量:4
9
作者 Z.MORTAZAVINIA A.ZARE A.MEHDIZADEH 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第2期165-176,共12页
The effects of the renal artery stenosis (RAS) on the blood flow and vessel walls are investigated. The pulsatile blood flow through an anatomically realistic model of the abdominal aorta and renal arteries reconstr... The effects of the renal artery stenosis (RAS) on the blood flow and vessel walls are investigated. The pulsatile blood flow through an anatomically realistic model of the abdominal aorta and renal arteries reconstructed from CT-scan images is simulated, which incorporates the fluid-structure interaction (FSI). In addition to the investigation of the RAS effects on the wall shear stress and the displacement of the vessel wall, it is determined that the RAS leads to decrease in the renal mass flow. This may cause the activation of the renin-angiotension system and results in severe hypertension. 展开更多
关键词 renal artery stenosis (RAS) PULSATILE fluid-structure interaction (FSI) non-Newtonian HYPERTENSION
下载PDF
Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method 被引量:9
10
作者 Xiuzhen Sun Chi Yu Yuefang Wang Yingxi Liu State Key Lab.of Struct.Anal.for Ind.Equip.,Dalian University of Technology,Dalian 116024,China The Second Affiliated Hospital,Dalian Medical University,Dalian 116027,China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第4期359-367,共9页
In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images ... In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed threedimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosingdiseases related to anatomical structure and function of the upper airway. 展开更多
关键词 Obstructive sleep apnea-hypopnea syndrome Upper airway Soft palate Three-dimensional finiteelement reconstruction fluid-structure interaction Numerical simulation
下载PDF
Failure pressure calculation of fracturing well based on fluid-structure interaction 被引量:2
11
作者 Jinzhou Zhao Lan Ren +1 位作者 Min Li Yongming Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第S1期450-456,共7页
Failure pressure is a key parameter in reservoir hydrofracturing operation. Existing analytical methods for calculating the failure pressure are based on the assumption that borehole fluid is under two extreme conditi... Failure pressure is a key parameter in reservoir hydrofracturing operation. Existing analytical methods for calculating the failure pressure are based on the assumption that borehole fluid is under two extreme conditions: non-infiltration or complete infiltration. The assumption is not suitable for the actual infiltration process, and this will cause a great error in practical calculation. It shows that during the injection process, the dynamic variation in effective stress-dependent permeability has an influence on the infiltration, and the influence also brings about calculation errors. Based on the fluid-structure interaction and finite element method (FEM), considering partial infiltration during injection process, a numerical model for calculating rock failure pressure is established. According to the analysis of permeability test results and response-surface method, a new variation rule of rock permeability with the change of effective stress is presented, and the relationships among the permeability, confining pressure and pore pressure are proposed. There are some differences between the dynamic value of permeability-effective-stress coefficient observed herein and the one obtained by the classical theory. Combining with the numerical model and the dynamic permeability, a coupling method for calculating failure pressure is developed. Comparison of field data and calculated values obtained by various methods shows that accurate values can be obtained by the coupling method. The coupling method can be widely applied to the calculation of failure pressure of reservoirs and complex wells to achieve effective fracturing operation. 展开更多
关键词 failure pressure fluid-structure interaction HYDROFRACTURING coupling method response-surface method
下载PDF
Fluid-Structure Interaction Modeling of the Living Artery: Based on the Zero-Pressure Status and the Anisotropic Hyperelastic Constitutive Model
12
作者 Dongliang Zhao Wenchang Tan 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期107-108,共2页
Vascular diseases such as aneurysm,hemadostenosis,aortic dissection are the primary causes of people’s death around world.As a result,it is significant to improve our knowledge about them,which can help to treat the ... Vascular diseases such as aneurysm,hemadostenosis,aortic dissection are the primary causes of people’s death around world.As a result,it is significant to improve our knowledge about them,which can help to treat the disease.Measuring the hemodynamic factor like the blood pressure,the wall shear stress(WSS)and the oscillatory shear index(OSI)is,however,still beyond the capabilities of in-vivo measurement techniques.So the use of mathematical models and numerical simulations for the studies of the blood flow in arteries and,in general,of the cardiovascular system,both in physiological and pathological conditions,has received an increasing attention in the biomedical community during the last two decades.Indeed,such studies aims at enhancing the current knowledge of the physiology of the cardiovascular system,as well as providing reliable tools for the medical doctors to predict the natural course of pathologies and,possibly,the occurrence of cardiovascular accidents.The computational vascular fluid-structure interaction(FSI)methodology is a numerical simulation method which is used to explain the hemodynamic factors.The WSS on the luminal wall and the mechanical stress in the vascular wall are directly related to the location of the lesion,and the blood flow strongly interacts with the vascular wall motion.The arterial wall continually adapts to the charge of its mechanical environment(due to,for example,growth,atrophy,remodelling,repair,ageing,and disease)and consequently undergoes several irreversible processes.Primary acute mechanisms of vascularFSI numerical simulation seem to be associated with(1)the arterial histology and the patient-specific complex geometry,(2)the typical mechanical properties of the layer,(3)properties of the blood is assumed as Newtonian fluid or non-Newtonian fluid based on the scale ofthe diameter of a vessel,(4)residual stress in the zero-pressure configuration.The arterial system naturally function under permanent physiological loading conditions.Fung defined the residual stress and measured the opening angle which varies greatly along the aortic tree.Consequently,most of these systems never experience a stress-free state in their’service life’,so a stress and strain fields are present in any in vivo obtained patientspecific cardiovascular geometry.The residual stress always be ignored in FSI simulation or be assumed to equal zero,and the vivo patient-specific artery geometry is assumed as zero-pressure configuration.To define the in vivo stress state of artery,an inverse problem needs to be solved:the undeformed shape of a body or its stress state in its deformed state needs to be determined given the deformed configuration and the loads causing this deformation.The modular inverse elastostatics method is used to resolve the pressure-induced stress state for in vivo imaging based on cardiovascular modeling proposed by Peirlinck.Here,we build a living vessel FSI model based on 4 key factors.In order to get the universal simulation results,we focus on idealized geometries of the vessel that represent healthy(physiological)conditions of the cerebral vasculature.Blood can be assumed as the Newtonian fluid at this scale.The anisotropic hyperelastic constitutive law(Gasser-Holzapfel-Ogden)is used in zero-pressure configuration.Afterwards,we propose the material parameters for the different constitutive models and the computational configurations.We demonstrate the importance of introducing the residual stress into vascular blood flow modeling by performing a comparing zero-pressure configuration and no-resistance configuration.We get the conclusion that the zero-pressure status model has smaller displacement and larger stress distribution compared with no-resistance stress model.Hence,the methodology presented here will be particularly useful to study the mechanobiological processes in the healthy and diseased vascular wall. 展开更多
关键词 fluid structure interaction zero-pressure configuration ANISOTROPIC HYPERELASTIC CONSTITUTIVE LAW
下载PDF
DYNAMIC SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS INVOLVING LARGE-AMPLITUDE SLOSHING 被引量:2
13
作者 ChenJianping ZhouRurong WuWenlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第1期117-120,共4页
An effective computational method is developed for dynamic analysis offluid-structure interaction problems involving large-amplitude sloshing of the fluid andlarge-displacement motion of the structure. The structure i... An effective computational method is developed for dynamic analysis offluid-structure interaction problems involving large-amplitude sloshing of the fluid andlarge-displacement motion of the structure. The structure is modeled as a rigid container supportedby a system consisting of springs and dashpots. The motion of the fluid is decomposed into twoparts: the large-displacement motion with the container and the large-amplitude sloshing relative tothe container. The former is conveniently dealt with by defining a container-fixed noninertiallocal frame, while the latter is easily handled by adopting an ALE kinematical description. Thisleads to an easy and accurate treatment of both the fluid-structure interface and the fluid freesurface without producing excessive distortion of the computational mesh. The coupling between thefluid and the structure is accomplished through the coupling matrices that can be easilyestablished. Two numerical examples, including a TLD-structure system and a simplified liquid-loadedvehicle system, are presented to demonstrate the effectiveness and reliability of the proposedmethod. The present work can also be applied to simulate fluid-structure problems incorporatingmultibody systems and several fluid domains. 展开更多
关键词 fluid-structure interaction Large-amplitude sloshing Dynamic simulation Arbitrary Lagrangian-Eulerian (ALE) description
下载PDF
Study of velocity effects on parachute inflation performance based on fluid-structure interaction method 被引量:1
14
作者 程涵 张鑫华 +1 位作者 余莉 陈猛 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第9期1177-1188,共12页
The inflation of a five-ring cone parachute with the airflow velocity of 18 m/s is studied based on the simplified arbitrary Lagrange Euler (SALE)/fluid-structure interaction (FSI) method. The numerical results of... The inflation of a five-ring cone parachute with the airflow velocity of 18 m/s is studied based on the simplified arbitrary Lagrange Euler (SALE)/fluid-structure interaction (FSI) method. The numerical results of the canopy shape, stability, opening load, and drag area are obtained, and they are well consistent with the experimental data gained from wind tunnel tests. The method is then used to simulate the opening process under different velocities. It is found that the first load shock affected by the velocity often occurs at the end of the initial inflation stage. For the first time, the phenomena that the inflation distance proportion coefficient increases and the dynamic load coefficient decreases, respectively, with the increase in the velocity are revealed. The above proposed method is competent to solve the large deformation problem without empirial coefficients, and can collect more space-time details of fluid-structure-motion information when it is compared with the traditional method. 展开更多
关键词 fluid-structure interaction (FSI) PARACHUTE inflation performance velocity empirical coefficient opening shock load
下载PDF
An IB Method for Non-Newtonian-Fluid Flexible-Structure Interactions in Three-Dimensions
15
作者 Luoding Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第4期125-143,共19页
Problems involving fluid flexible-structure interactions(FFSI)are ubiquitous in engineering and sciences.Peskin’s immersed boundary(IB)method is the first framework for modeling and simulation of such problems.This p... Problems involving fluid flexible-structure interactions(FFSI)are ubiquitous in engineering and sciences.Peskin’s immersed boundary(IB)method is the first framework for modeling and simulation of such problems.This paper addresses a three-dimensional extension of the IB framework for non-Newtonian fluids which include power-law fluid,Oldroyd-B fluid,and FENE-P fluid.The motion of the non-Newtonian fluids are modelled by the lattice Boltzmann equations(D3Q19 model).The differential constitutive equations of Oldroyd-B and FENE-P fluids are solved by the D3Q7 model.Numerical results indicate that the new method is first-order accurate and conditionally stable.To show the capability of the new method,it is tested on three FFSI toy problems:a power-law fluid past a flexible sheet fixed at its midline,a flexible sheet being flapped periodically at its midline in an Oldroyd-B fluid,and a flexible sheet being rotated at one edge in a FENE-P fluid. 展开更多
关键词 fluid flexible-structure interaction immersed boundary method lattice Boltzmann power-law OLDROYD-B FENE-P
下载PDF
ALE Fractional Step Finite Element Method for Fluid-Structure Nonlinear Interaction Problem 被引量:1
16
作者 岳宝增 《Journal of Beijing Institute of Technology》 EI CAS 2006年第1期5-8,共4页
A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as th... A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as the free surface motion, the arbitrary Lagrangian-Eulerian formulation is employed as the basis of the finite element spatial discretization. For numerical integration in time, the fraction,step method is used. This method is useful because one can use the same linear interpolation function for both velocity and pressure. The method is applied to the nonlinear interaction of a structure and a tuned liquid damper. All computations are performed with a personal computer. 展开更多
关键词 Navier-Stokes equation arbitrary Lagrangian-Eulerian (ALE) finite element method fractional method fluid-structure interaction
下载PDF
Fluid-Structure Interaction Analysis for Drug Transport in a Curved Stenotic Right Coronary Artery
17
作者 Seungman Park 《Journal of Biosciences and Medicines》 2016年第5期105-115,共11页
A blockage of blood vessels resulting from thrombus or plaque deposit causes serious cardiovascular diseases. This study developed a computational model of blood flow and drug transport to investigate the effectivenes... A blockage of blood vessels resulting from thrombus or plaque deposit causes serious cardiovascular diseases. This study developed a computational model of blood flow and drug transport to investigate the effectiveness of drug delivery to the stenotic sites. A three-dimensional (3D) model of the curved stenotic right coronary artery (RCA) was reconstructed based on the clinical angiogram image. Then, blood flow and drug transport with the flexible RCA wall were simulated using the fluid structure interaction (FSI) analysis and compared with the rigid RCA wall. Results showed that the maximal total displacement and von Mises stress of the flexible RCA model are 2.14 mm and 92.06 kPa. In addition, the effective injecting time point for the best performance of drug delivery was found to be between 0 s and 0.15 s (i.e., the fluid acceleration region) for both rigid and flexible RCA models. However, there was no notable difference in the ratio of particle deposition to the stenotic areas between the rigid and flexible RCA models. This study will be significantly useful to the design of a drug delivery system for the treatment of the stenotic arteries by targeting drugs selectively to the stenotic sites. 展开更多
关键词 Cardiovascular Disease Right Coronary Artery (RCA) fluid Structure interaction (FSI) Computational Modeling Drug Delivery
下载PDF
An investigation into natural vibrations of fluid-structure interaction systems subject to Sommerfeld radiation condition 被引量:2
18
作者 Jing Tang Xing 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第1期69-82,共14页
A fluid-structure interaction system subject to Sommerfeld's condition is defined as a Sommerfeld system which is divided into three categories: Fluid Sommerfeld (FS) System, Solid Sommerfeld (SS) System and Flu... A fluid-structure interaction system subject to Sommerfeld's condition is defined as a Sommerfeld system which is divided into three categories: Fluid Sommerfeld (FS) System, Solid Sommerfeld (SS) System and Fluid Solid Sommerfeld (FSS) System of which Sommerfeld conditions are imposed on a fluid boundary only, a solid boundary only and both fluid and solid boundaries, respectively. This paper follows the previous initial results claimed by simple examples to further mathematically investigate the natural vibrations of generalized Sommerfeld systems. A new parameter representing the speed of radiation wave for generalized 3-D problems with more complicated boundary conditions is introduced into the Sommerfeld condition which allows investigation of the natural vibrations of a Sommerfeld system involving both free surface and compressible waves. The mathematical demonstrations and selected examples confirm and reveal the natural behaviour of generalized Sommerfeld systems defined above. These generalized conclusions can be used in theoretical or engineering analysis of the vibrations of various Sommerfeld systems in engineering. 展开更多
关键词 Sommerfeld system Complex natural frequencies fluid-structure interaction Complex energyflow identity Speed of radiation wave
下载PDF
An Overset Grid Method for Fluid-Structure Interaction 被引量:1
19
作者 Scott T. Miller R. L. Campbell +2 位作者 C. W. Elsworth J. S. Pitt D. A. Boger 《World Journal of Mechanics》 2014年第7期217-237,共21页
An overset grid methodology is developed for the fully coupled analysis of fluid-structure interaction (FSI) problems. The overset grid approach alleviates some of the computational geometry difficulties traditionally... An overset grid methodology is developed for the fully coupled analysis of fluid-structure interaction (FSI) problems. The overset grid approach alleviates some of the computational geometry difficulties traditionally associated with Arbitrary-Lagrangian-Eulerian (ALE) based, moving mesh methods for FSI. Our partitioned solution algorithm uses separate solvers for the fluid (finite volume method) and the structure (finite element method), with mesh motion computed only on a subset of component grids of our overset grid assembly. Our results indicate a significant reduction in computational cost for the mesh motion, and element quality is improved. Numerical studies of the benchmark test demonstrate the benefits of our overset mesh method over traditional approaches. 展开更多
关键词 Overset Grid fluid-structure interaction Arbitrary-Lagrangian EULERIAN FINITE Volume FINITE Element Moving MESH OPENFOAM
下载PDF
Numerical Simulation of Fluid-Structure Interaction Method on Dynamic Movement of Leukocyte in Flow Chamber
20
作者 Wenjiao Li 《Advances in Pure Mathematics》 2013年第9期692-697,共6页
Biomechanical properties of cells play a very important role in regulating cells function. Experimental studies found that when Leukocytes move near the vessel wall, the phenomena such as rolling, jumping and adhesion... Biomechanical properties of cells play a very important role in regulating cells function. Experimental studies found that when Leukocytes move near the vessel wall, the phenomena such as rolling, jumping and adhesion will appear. Based on the non-linear fluid-structure interaction theory, leukocyte’s tiny jumping mechanism and rolling phenomenon were studied. The results were: 1) The choice of time step of leukocyte had a great influence on the movement of leukocyte. Instead of landing on the bottom of flow chamber, leukocyte jumped to a certain height and then moved periodically toward the bottom of the flow chamber again. Leukocyte had the biggest deformation when jumping;2) Adhesion and rolling along the bottom of the flow chamber appeared in the process of moving forward, the scrolling speed was greater than that of pure rolling. Leukocytes’ movement in blood vessels was closely related with body physiological and pathological characteristics. The study of dynamic movement of leukocyte provided theoretical basis for clinical medicine. 展开更多
关键词 fluid-structure interaction LEUKOCYTE JUMPING ROLLING
下载PDF
上一页 1 2 181 下一页 到第
使用帮助 返回顶部