期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Formation,evolution,reconstruction of black shales and their influence on shale oil and gas resource
1
作者 Shi-zhen Li Qiu-chen Xu +11 位作者 Mu Liu Guo-heng Liu Yi-fan Li Wen-yang Wang Xiao-guang Yang Wei-bin Liu Yan-fei An Peng Sun Tao Liu Jiang-hui Ding Qian-chao Li Chao-gang Fang 《China Geology》 CAS CSCD 2024年第3期551-585,共35页
Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en... Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment. 展开更多
关键词 Black shales Shale oil and gas Resource effects Sedimentary environment Sedimentary process Organic matter accumulation Diagenetic evolution Thermal evolution Organic matter and inorganic minerals Tectonic reconstruction Oil and gas exploration engineering VEINS fluid activity
下载PDF
Eclogites of the Dabie Region: Retrograde Metamorphismand Fluid Evolution 被引量:4
2
作者 顾连兴 杜建国 +3 位作者 翟建平 赵成浩 范建国 张文兰 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2002年第2期166-182,共17页
Based upon fluid effects, retrograde metamorphism of eclogites in the Dabieregion can be divided into the fluid-poor, fluid-bearing and fluid-rich stages. The fluid-poor stageis marked by polymorphic inversion, recrys... Based upon fluid effects, retrograde metamorphism of eclogites in the Dabieregion can be divided into the fluid-poor, fluid-bearing and fluid-rich stages. The fluid-poor stageis marked by polymorphic inversion, recrystallization and exsolution of solid solutions, and isthought to represent eclogite-facies retrograde environments. The fluid-bearing stage is likely tohave occurred at the late stage of ecologite-facies diaphthorosis and is represented by kyaniteporphyroblasts, rutile, and sodic pyroxene in association with high-pressure hydrous minerals suchas phengite and zoisite (clinozoisite) without significant amount of hydrous minerals such asamphibole, epidote and biotite. The fluid-rich stage might have commenced concomitantly with loweramphibolite-facies diaphthoresis and persisted all the way towards the near-surface environment. Theproduct of this stage is characterized by plentiful hydrous and volatile-bearing phases.The dissemination-type rutile mineralizations in eclogites might have formed by preferentialshearing-induced pressure solution of gangue minerals at the fluid-bearing stage. The accompanyingvein rutile was precipitated from fluids of this stage after local transport and concentration, andmay hence represent proximal mobilization of titanium from the eclogite. Therefore, rutile veins canbe used as an exploration indicator for dissemination-type rutile deposits. 展开更多
关键词 ultra-high pressure metamorphism ECLOGITE retrograde metamorphism fluid activity rutile ore DABIE
下载PDF
Fluid Activity and Tectonic Evolution in the Northern Qilian High-pressure Metamorphic Belt 被引量:1
3
作者 LIU Bin(刘斌) +1 位作者 SHEN Kun(沈昆) 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2002年第4期408-422,共15页
The Northern Qilian high-pressure metamorphic belt has experienced multipledeformation-metamorphism, which consists of at least four stages. In 550.8-526 Ma, eclogites wereformed. High temperature and pressure caused ... The Northern Qilian high-pressure metamorphic belt has experienced multipledeformation-metamorphism, which consists of at least four stages. In 550.8-526 Ma, eclogites wereformed. High temperature and pressure caused the escape of a large quantity of gas-liquid fluidsfrom rocks while silicate melt was generated. In the late stage, small amounts of CO_2 and H_2Oinfiltrating along fractures were introduced. In the formation of glaucophane schist (447-362 Ma),devolatilization reactions were dominated during the subduction-uplift stage of the paleoplate. Inthe uplift-exhumation stage (400-380 Ma) the increase of internal space of fractures in the rocksfavoured fluid infiltration and concentration. These fluids participated in hydration reactions inthe retro-metamorphism. The fluids participating in the mineral reactions have the compositions ofCaCl_2-NaCl-H_2O. In subsequent thrusting (<380 Ma), the metamorphic terrain was uplifted to theshallower crust and ductile-shearing deformation took place, which caused mainly dehydrationreactions of minerals. In a near-surface environment the metamorphic terrain experienced brittledeformation, forming many accompanying fractures. Immiscible CO_2 and low-salinity aqueous fluidsoccurred in these secondary microfractures and were trapped and sealed. The thermodynamic conditionsof different deformation-metamorphic stages of the metamorphic terrain were calculated and thecorresponding P-T-t path was deduced, showing that the metamorphic terrain has experienced aclockwise path indicated by T- and P-rising, and T- and P-falling processes. This reveals that thesubduction zone has undergone multiple tectono-dynamic processes, i.e. initial deep burial,subsequent quick uplift and near-surface tectonism. 展开更多
关键词 Northern Qilian Mountains high-pressure metamorphic belt fluid inclusion fluid activity tectonic evolution
下载PDF
Essential Oil from Inula britannica Extraction with SF-CO_2 and Its Antifungal Activity 被引量:1
4
作者 ZHAO Te GAO Fei +1 位作者 ZHOU Lin SONG Tian-you 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第10期1791-1798,共8页
The aim of this study was to determine the extraction technique of supercritical fluid carbon dioxide(SF-CO 2) for the essential oil from Inula britannica flowers and its antifungal activities against plant pathogen... The aim of this study was to determine the extraction technique of supercritical fluid carbon dioxide(SF-CO 2) for the essential oil from Inula britannica flowers and its antifungal activities against plant pathogenic fungi for its potential application as botanical fungicide.The effects of factors,including extraction temperature,extraction pressure,SF-CO 2 flow rate,flower powder size,and time on the essential oil yield were studied using the single factor experiment.An orthogonal experiment was conducted to determine the best operating conditions for the maximum extraction oil yield.Adopting the optimum conditions,the maximum yield reached 10.01% at 40°C temperature,30 MPa pressure,60 mesh flower powder size,20 L h-1SF-CO 2 flow rate,and 90 min extraction time.The antifungal activities of I.britannica essential oil using the SF-CO 2 against the most important plant pathogenic fungi were also examined through in vitro and in vivo tests.Sixteen plant pathogenic fungi were inhibited to varying degrees at 1 mg mL-1concentration of the essential oil.The mycelial growth of Gaeumannomyces graminis var.tritici was completely inhibited.The radial growths of Phytophthora capsici and Fusarium monilifome were also inhibited by 83.76 and 64.69%,respectively.In addition,the essential oil can inhibit the spore germination of Fusarium oxysporum f.sp.vasinfectum,Phytophthora capsici,Colletotrichum orbiculare,and Pyricularia grisea,and the corresponding inhibition rates were 98.26,96.54,87.89,and 87.35% respectively.The present study has demonstrated that the essential oil of I.britannica flowers extracted through the SF-CO 2 technique is one potential and promising antifungal agent that can be used as botanical fungicide to protect crops. 展开更多
关键词 Inula britannica essential oil supercritical fluid carbon dioxide extraction optimization antifungal activity botanical fungicide
下载PDF
Some Geochemical Characters of Kimberlites in Eastern North China Platform and Heterogeneity of Their Sources
5
作者 Zheng Jianping Lu Fengxiang +2 位作者 Wang Baixuan Wang Yin Chen Zhongmei(Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074) 《Journal of Earth Science》 SCIE CAS CSCD 1996年第2期173-177,共5页
Some geochemical characters of the kimberlites from different rock regions in North China platform are compared in this paper at first. The characters of the source regions are constrained then based on primary magmas... Some geochemical characters of the kimberlites from different rock regions in North China platform are compared in this paper at first. The characters of the source regions are constrained then based on primary magmas compositions of typical regions chosen. The differences in metasomatic fluid activity in the lithosphere are discussed moreover. The diamondiferious kimberlitic sources, such as Fuxian and Mongying, were located at the fluid metasomatic mantle lithosphere or the boundary between the lithosphere and the asthenosphere(200-230 km), and enrich in LREE,Ti and isotope Sr but deplete in isotope Nd. Tieling is located nearby Paleozoic mobile belt, strong activity in fluids and shallower depth of magma source (~150 km), highest in w(LREE) and w (P), lower in w(Ti). But the shallowest depth of magma source (<130 km ) and weak activity in fluids are in Hebi and Shexian sources. 展开更多
关键词 KIMBERLITE source geochemistry depth fluid activity North China platform
下载PDF
Metamorphism, fluid behavior and magmatism in oceanic subduction zones 被引量:5
6
作者 Chimjing WEI Yongfei ZHENG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第1期52-77,共26页
Based on the updated results of experimental petrology and phase equilibria modelling and combined with the available thermal structure models of subduction zones, this paper presents an overview on the dehydration an... Based on the updated results of experimental petrology and phase equilibria modelling and combined with the available thermal structure models of subduction zones, this paper presents an overview on the dehydration and melting of basic,sedimentary and ultrabasic rocks that occur in the different stages during oceanic subduction processes and their influences on magmatism above subduction zones. During the subduction at the forearc depth of <90–100 km, the basic and ultrabasic rocks from most oceanic slabs can release very small amounts of water, and significant dehydration may occur in the slab superficial sediments. Strong dehydration occurs in both basic and ultrabasic rocks during subduction at the subarc depth of 90–200 km. For example, more than 90% water in basic rocks is released by the successive dehydration of chlorite, glaucophane, talc and lawsonite in the subarc depths. This is diversely in contrast to the previous results from synthetic experiments. Ultrabasic rocks may undergo strong dehydration through antigorite, chlorite and phase 10 ? at the subarc depth of 120–220 km. However,sediments can contribute minor fluids at the subarc depth, one main hydrous mineral in which is phengite(muscovite). It can stabilize to ~300 km depth and transform into K-hollandite. After phengite breaks down, there will be no significant fluid release from oceanic slab until it is subducted to the mantle transition zone. In a few hot subduction zones, partial melting(especially flux melting) can occur in both sediments and basic rocks, generating hydrous granitic melts or supercritical fluids, and in carbonates-bearing sediments potassic carbonatite melts can be generated. In a few cold subduction zones, phase A occurs in ultrabasic rocks, which can bring water deep into the transition zone. The subducted rocks, especially the sediments, contain large quantities of incompatible minor and trace elements carried through fluids to greatly influence the geochemical compositions of the magma in subduction zones. As the geothermal gradients of subduction zones cannot cross the solidi of carbonated eclogite and peridotite during the subarc subduction stage, the carbonate minerals in them can be carried into the deep mantle.Carbonated eclogite can melt to generate alkali-rich carbonatite melts at >400 km depth, while carbonated peridotite will not melt in the mantle transition zone below a subduction zone. 展开更多
关键词 Oceanic subduction METAMORPHISM Phase equilibria fluid activity Subduction zone magmatism Carbon cycle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部