Because of my carelessness,Eq.(1)in the paper "An approximate method for calculating the fluid force and response of a circular cylinder at lock-in"(China Ocean Engineering,22(3),2008,pp.373)should be f...Because of my carelessness,Eq.(1)in the paper "An approximate method for calculating the fluid force and response of a circular cylinder at lock-in"(China Ocean Engineering,22(3),2008,pp.373)should be f’-1.0/U’-5.0=f’;-1.0/5.75f’;-5.0,not f’=U’/5.75. My apology is hereby given.展开更多
This paper introduces and establishes a quasi-three-dimensional physical model of the interaction between a laser and a slab target.In contrast to previous one-dimensional analytical models,this paper innovatively fit...This paper introduces and establishes a quasi-three-dimensional physical model of the interaction between a laser and a slab target.In contrast to previous one-dimensional analytical models,this paper innovatively fits the real laser conditions based on an isothermal,homogeneous expansion similarity solution of the ideal hydrodynamic equations.Using this simple model,the evolution law and analytical formulae for key parameters(e.g.,temperature,density and scale length)in the corona region under certain conditions are given.The analytical solutions agree well with the relevant results of computational hydrodynamics simulation.For constant laser irradiation,the analytical solutions provide a meaningful power-law scaling relationship.The model provides a set of mathematical and physical tools that give theoretical support for adjusting parameters in experiments.展开更多
In the initial phase of the physics experiment, the double-null divertor plates used consist of graphite armor tiles, Mo-alloy intermediate layers and Cu-alloy coolant tubes. In the later operating phase, tungsten wil...In the initial phase of the physics experiment, the double-null divertor plates used consist of graphite armor tiles, Mo-alloy intermediate layers and Cu-alloy coolant tubes. In the later operating phase, tungsten will be used as armor tiles. A multi-physical field numerical analysis method is used in this paper. Its analysis model reflects more realistically the real divertor structure than other models. Two-dimensional (2D) and three-dimensional (3D) fluid flow field, temperature distribution and thermal stress analyses of the divertor plates are carried out by the ANSYS code. During the physics experimental phase with a heat flux of 1 MW/m2, a coolant velocity of 5.48 m/s, and a thermal stress of 750 kg/cm2, the graphite armor tiles successfully meet the requirements of temperature, thermal stress and sputtering erosion. The tungsten armor will be considered as a second candidate. The result of simulation can be used for upgrading the design parameters of the HL-2A poloidal divertor.展开更多
In the application of spectral method to the calculation of moving interface between fluids in porous medium there are two difficulties: the spectral calcula- tion of function defined by a singular integral and the nu...In the application of spectral method to the calculation of moving interface between fluids in porous medium there are two difficulties: the spectral calcula- tion of function defined by a singular integral and the numerical quadrature of highly oscillating function. This paper proposes a spectral method for calculating the problem and finds the way to overcome the two difficulties. Example calcula- tions show that the method can describe successfully interfacial motion and, with almost the same order of computational amount, is more accurate and stabler than the corresponding finite difference method.展开更多
文摘Because of my carelessness,Eq.(1)in the paper "An approximate method for calculating the fluid force and response of a circular cylinder at lock-in"(China Ocean Engineering,22(3),2008,pp.373)should be f’-1.0/U’-5.0=f’;-1.0/5.75f’;-5.0,not f’=U’/5.75. My apology is hereby given.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA25051000)the National Natural Science Foundation of China (Grant No.11574390)。
文摘This paper introduces and establishes a quasi-three-dimensional physical model of the interaction between a laser and a slab target.In contrast to previous one-dimensional analytical models,this paper innovatively fits the real laser conditions based on an isothermal,homogeneous expansion similarity solution of the ideal hydrodynamic equations.Using this simple model,the evolution law and analytical formulae for key parameters(e.g.,temperature,density and scale length)in the corona region under certain conditions are given.The analytical solutions agree well with the relevant results of computational hydrodynamics simulation.For constant laser irradiation,the analytical solutions provide a meaningful power-law scaling relationship.The model provides a set of mathematical and physical tools that give theoretical support for adjusting parameters in experiments.
文摘In the initial phase of the physics experiment, the double-null divertor plates used consist of graphite armor tiles, Mo-alloy intermediate layers and Cu-alloy coolant tubes. In the later operating phase, tungsten will be used as armor tiles. A multi-physical field numerical analysis method is used in this paper. Its analysis model reflects more realistically the real divertor structure than other models. Two-dimensional (2D) and three-dimensional (3D) fluid flow field, temperature distribution and thermal stress analyses of the divertor plates are carried out by the ANSYS code. During the physics experimental phase with a heat flux of 1 MW/m2, a coolant velocity of 5.48 m/s, and a thermal stress of 750 kg/cm2, the graphite armor tiles successfully meet the requirements of temperature, thermal stress and sputtering erosion. The tungsten armor will be considered as a second candidate. The result of simulation can be used for upgrading the design parameters of the HL-2A poloidal divertor.
基金This work is supported by the National Natural Science Foundation of China
文摘In the application of spectral method to the calculation of moving interface between fluids in porous medium there are two difficulties: the spectral calcula- tion of function defined by a singular integral and the numerical quadrature of highly oscillating function. This paper proposes a spectral method for calculating the problem and finds the way to overcome the two difficulties. Example calcula- tions show that the method can describe successfully interfacial motion and, with almost the same order of computational amount, is more accurate and stabler than the corresponding finite difference method.