The effects of phosphorus on the structure and hydrofining performance of tri-metallic WMoNi/Al2O3 catalysts prepared with W/Mo-based hybrid precursor nanocrystals were investigated. The incorporation of phosphorus we...The effects of phosphorus on the structure and hydrofining performance of tri-metallic WMoNi/Al2O3 catalysts prepared with W/Mo-based hybrid precursor nanocrystals were investigated. The incorporation of phosphorus weakened the metal-support interactions (MSIs) and facilitated the formation of more synergetic NiWMoS phases with higher stacks. Catalytic tests using a fluid catalytic cracking diesel fuel showed that the changes in the MSIs and the morphology of the active phases had a more positive effect on the hydrodenitrogenation activity than on the hydrodesulfurization activity. In contrast, when phosphorus was incorporated into a tri-metallic WMoNiP/Al2O3 catalyst prepared by a conventional incipient impregnation method, the MSIs decreased causing aggregation of the metal species which resulted in poorer hydrofining performance of the catalyst. These results show that incorporating phosphorus into a WMoNi/Al2O3 catalyst can finely tune the structure of the active phase to enhance the hydrogenation and hydrodenitrogenation activity of the resulting tri-metallic catalyst.展开更多
基金Acknowledgements We gratefully acknowledge the support from the National Natural Science Foundation of China (Grant Nos. U1462203 and 21106182).
文摘The effects of phosphorus on the structure and hydrofining performance of tri-metallic WMoNi/Al2O3 catalysts prepared with W/Mo-based hybrid precursor nanocrystals were investigated. The incorporation of phosphorus weakened the metal-support interactions (MSIs) and facilitated the formation of more synergetic NiWMoS phases with higher stacks. Catalytic tests using a fluid catalytic cracking diesel fuel showed that the changes in the MSIs and the morphology of the active phases had a more positive effect on the hydrodenitrogenation activity than on the hydrodesulfurization activity. In contrast, when phosphorus was incorporated into a tri-metallic WMoNiP/Al2O3 catalyst prepared by a conventional incipient impregnation method, the MSIs decreased causing aggregation of the metal species which resulted in poorer hydrofining performance of the catalyst. These results show that incorporating phosphorus into a WMoNi/Al2O3 catalyst can finely tune the structure of the active phase to enhance the hydrogenation and hydrodenitrogenation activity of the resulting tri-metallic catalyst.