With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat tr...With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions.展开更多
Experimentalists, numerical modellers and reactor modellers need to work together, not only just for validation of numerical codes, but also to shed fundamental light on each other's problems and underlying assumptio...Experimentalists, numerical modellers and reactor modellers need to work together, not only just for validation of numerical codes, but also to shed fundamental light on each other's problems and underlying assumptions. Several examples are given, Experimental gas axial dispersion data provide a means of choosing the most appropriate boundary condition (no slip, partial slip or full slip) for particles at the wall of fluidized beds. CFD simulations help to identify how close "two-dimensional" experimental columns are to being truly two-dimensional and to representing three-dimensional columns. CFD also can be used to provide a more rational means of establishing assumptions needed in the modelling of two-phase fluidized bed reactors, for example how to deal with cases where there is a change in molar flow (and hence volumetric flow) as a result of chemical reactions.展开更多
It has long been known that human activities such as waste fluid disposal and reservoir impoundment may cause earthquakes. Recently, anthropogenic activities to tackle the increasing energy demand and to address clima...It has long been known that human activities such as waste fluid disposal and reservoir impoundment may cause earthquakes. Recently, anthropogenic activities to tackle the increasing energy demand and to address climate change issues are also reported to induce earthquakes. These activities have a common attribute in that fluids are injected and extracted underground and induce spatiotemporal changes of pore pressure and stress, which may cause slip on faults. Induced earthquakes not only pose significant impacts on seismic hazard assessment and preparation, but also raise the question to the society as how to balance the economic needs of resources development and the public's concerns about potential environmental impacts. Here we review the observations of fluid-injection/extraction induced earthquakes, ground deformation associated with these activities, and their physical mechanisms. Furthermore, we discuss the influences of induced earthquakes on seismic hazard models, regulatory policies on these anthropogenic activities, and current development of academic, industrial and government initiatives and collaborations in order to understand this intriguing phenomenon and address associated challenges.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52271320)"Mechanics+"interdisciplinary innovation youth fund project of Ningbo University(LJ2023005).
文摘With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions.
文摘Experimentalists, numerical modellers and reactor modellers need to work together, not only just for validation of numerical codes, but also to shed fundamental light on each other's problems and underlying assumptions. Several examples are given, Experimental gas axial dispersion data provide a means of choosing the most appropriate boundary condition (no slip, partial slip or full slip) for particles at the wall of fluidized beds. CFD simulations help to identify how close "two-dimensional" experimental columns are to being truly two-dimensional and to representing three-dimensional columns. CFD also can be used to provide a more rational means of establishing assumptions needed in the modelling of two-phase fluidized bed reactors, for example how to deal with cases where there is a change in molar flow (and hence volumetric flow) as a result of chemical reactions.
基金supported by the NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant Nos. N_CUHK418/15, N_CUHK430/16)CUHK-University of Manchester Research Fund (Grant No. 4930227)+4 种基金United States National Science Foundation (Grant No. OCE-1357433)Natural Sciences and Engineering Research Council of Canada (Grant No. STPGP 494141-16)Japan Society for the Promotion of Science (Grant Nos. KAKENHI 2624004, 26280006)National Natural Science Foundation of China (Grant No. 41474033)the Summer School Program of Peking University
文摘It has long been known that human activities such as waste fluid disposal and reservoir impoundment may cause earthquakes. Recently, anthropogenic activities to tackle the increasing energy demand and to address climate change issues are also reported to induce earthquakes. These activities have a common attribute in that fluids are injected and extracted underground and induce spatiotemporal changes of pore pressure and stress, which may cause slip on faults. Induced earthquakes not only pose significant impacts on seismic hazard assessment and preparation, but also raise the question to the society as how to balance the economic needs of resources development and the public's concerns about potential environmental impacts. Here we review the observations of fluid-injection/extraction induced earthquakes, ground deformation associated with these activities, and their physical mechanisms. Furthermore, we discuss the influences of induced earthquakes on seismic hazard models, regulatory policies on these anthropogenic activities, and current development of academic, industrial and government initiatives and collaborations in order to understand this intriguing phenomenon and address associated challenges.