期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model
1
作者 Runqing CAO Zilong GUO +2 位作者 Wei CHEN Huliang DAI Lin WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期261-276,共16页
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid... Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system. 展开更多
关键词 curved pipe conveying fluid pulsating fluid geometrically exact model(GEM) nonlinear dynamics parametric vibration FLUTTER
下载PDF
HOPF BIFURCATION OF A NONLINEAR RESTRAINED CURVED PIPE CONVEYING FLUID BY DIFFERENTIAL QUADRATURE METHOD 被引量:7
2
作者 Wang Lin Ni Qiao Huang Yuying (Department of Mechanics,Huazhong University of Science and Technology,Wuhan 430074,China) 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第4期345-352,共8页
This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support.The nonlinear equation of motion is derived by forces equilibrium on microelement ... This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support.The nonlinear equation of motion is derived by forces equilibrium on microelement of the system under consideration.The spatial coordinate of the system is discretized by the differential quadrature method and then the dynamic equation is solved by the Newton-Raphson method.The numerical solutions show that the inner fluid velocity of the Hopf bifurcation point of the curved pipe varies with different values of the parameter, nonlinear spring stiffness.Based on this,the cycle and divergent motions are both found to exist at specific fluid flow velocities with a given value of the nonlinear spring stiffness.The results are useful for further study of the nonlinear dynamic mechanism of the curved fluid conveying pipe. 展开更多
关键词 curved fluid conveying pipe Hopf bifurcation nonlinear vibration DQM
下载PDF
In-plane forced vibration of curved pipe conveying fluid by Green function method 被引量:7
3
作者 Qianli ZHAO Zhili SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第10期1397-1414,共18页
The Green function method (GFM) is utilized to analyze the in-plane forced vibration of curved pipe conveying fluid, where the randomicity and distribution of the external excitation and the added mass and damping r... The Green function method (GFM) is utilized to analyze the in-plane forced vibration of curved pipe conveying fluid, where the randomicity and distribution of the external excitation and the added mass and damping ratio are considered. The Laplace transform is used, and the Green functions with various boundary conditions are obtained subsequently. Numerical calculations are performed to validate the present solutions, and the effects of some key parameters on both tangential and radial displacements are further investigated. The forced vibration problems with linear and nonlinear motion constraints are also discussed briefly. The method can be radiated to study other forms of forced vibration problems related with pipes or more extensive issues. 展开更多
关键词 in-plane forced vibration curved pipe conveying fluid Green functionmethod (GFM) motion constraint
下载PDF
Flow-Induced Vibration of A Nonlinearly Restrained Curved Pipe Conveying Fluid
4
作者 王琳 倪樵 黄玉盈 《海洋工程:英文版》 EI 2004年第3期347-356,共10页
Investigated in this study is the flow induced vibration of a nonlinearly restrained curved pipe conveying fluid. The nonlinear equation of motion is derived by equilibrium of forces on microelement of the system und... Investigated in this study is the flow induced vibration of a nonlinearly restrained curved pipe conveying fluid. The nonlinear equation of motion is derived by equilibrium of forces on microelement of the system under consideration. The spatial coordinate of the system is discretized by DQM (differential quadrature method). On the basis of the boundary conditions, the dynamic equation is solved by the Newton Raphson iteration method. The numerical solutions reveal several complex dynamic motions for the variation of the fluid velocity parameter, such as limit cycle motion, buckling and so on. The result obtained also shows that the sub parameter regions corresponding to the several motions may change with the variation of some parameters of the curved pipe. The present study supplies a new reference for investigating the nonlinear dynamic response of some other structures. 展开更多
关键词 curved pipe conveying fluid flow induced vibration limit cycle motion motion constraint differential quadrature method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部