期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
THE IMPROVED FOURIER SPLITTING METHOD AND DECAY ESTIMATES OF THE GLOBAL SOLUTIONS OF THE CAUCHY PROBLEMS FOR NONLINEAR SYSTEMS OF FLUID DYNAMICS EQUATIONS
1
作者 Linghai Zhang 《Annals of Applied Mathematics》 2016年第4期396-417,共22页
Consider the Cauchy problems for an n-dimensional nonlinear system of fluid dynamics equations. The main purpose of this paper is to improve the Fourier splitting method to accomplish the decay estimates with sharp ra... Consider the Cauchy problems for an n-dimensional nonlinear system of fluid dynamics equations. The main purpose of this paper is to improve the Fourier splitting method to accomplish the decay estimates with sharp rates of the global weak solutions of the Cauchy problems. We will couple togeth- er the elementary uniform energy estimates of the global weak solutions and a well known Gronwall's inequality to improve the Fourier splitting method. This method was initiated by Maria Schonbek in the 1980's to study the op- timal long time asymptotic behaviours of the global weak solutions of the nonlinear system of fluid dynamics equations. As applications, the decay esti- mates with sharp rates of the global weak solutions of the Cauchy problems for n-dimensional incompressible Navier-Stokes equations, for the n-dimensional magnetohydrodynamics equations and for many other very interesting nonlin- ear evolution equations with dissipations can be established. 展开更多
关键词 nonlinear systems of fluid dynamics equations global weaksolutions decay estimates uniform energy estimates Fourier transformation Plancherel's identity Gronwall's inequality improved Fourier splitting method
原文传递
Solutions to Some Open Problems in Fluid Dynamics
2
作者 Linghai ZHANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2008年第2期179-198,共20页
Let u=u(x,t,uo)represent the global solution of the initial value problem for the one-dimensional fluid dynamics equation ut-εuxxt+δux+γHuxx+βuxxx+f(u)x=αuxx,u(x,0)=uo(x), whereα〉0,β〉0,γ〉0,δ〉0... Let u=u(x,t,uo)represent the global solution of the initial value problem for the one-dimensional fluid dynamics equation ut-εuxxt+δux+γHuxx+βuxxx+f(u)x=αuxx,u(x,0)=uo(x), whereα〉0,β〉0,γ〉0,δ〉0 andε〉0 are constants.This equation may be viewed as a one-dimensional reduction of n-dimensional incompressible Navier-Stokes equations. The nonlinear function satisfies the conditions f(0)=0,|f(u)|→∞as |u|→∞,and f∈C^1(R),and there exist the following limits Lo=lim sup/u→o f(u)/u^3 and L∞=lim sup/u→∞ f(u)/u^5 Suppose that the initial function u0∈L^I(R)∩H^2(R).By using energy estimates,Fourier transform,Plancherel's identity,upper limit estimate,lower limit estimate and the results of the linear problem vt-εv(xxt)+δvx+γHv(xx)+βv(xxx)=αv(xx),v(x,0)=vo(x), the author justifies the following limits(with sharp rates of decay) lim t→∞[(1+t)^(m+1/2)∫|uxm(x,t)|^2dx]=1/2π(π/2α)^(1/2)m!!/(4α)^m[∫R uo(x)dx]^2, if∫R uo(x)dx≠0, where 0!!=1,1!!=1 and m!!=1·3…(2m-3)…(2m-1).Moreover lim t→∞[(1+t)^(m+3/2)∫R|uxm(x,t)|^2dx]=1/2π(x/2α)^(1/2)(m+1)!!/(4α)^(m+1)[∫Rρo(x)dx]^2, if the initial function uo(x)=ρo′(x),for some functionρo∈C^1(R)∩L^1(R)and∫Rρo(x)dx≠0. 展开更多
关键词 Exact limits Sharp rates of decay fluid dynamics equation Global smooth solutions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部