期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone 被引量:4
1
作者 Lixia Fan Shaopeng Pei +1 位作者 X Lucas Lu Liyun Wang 《Bone Research》 SCIE CAS CSCD 2016年第3期154-163,共10页
The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching... The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal deficiencies. 展开更多
关键词 A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone FIGURE
下载PDF
A hybrid finite volume/finite element method for incompressible generalized Newtonian fluid flows on unstructured triangular meshes
2
作者 Wei Gao Ruxun Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第6期747-760,共14页
This paper presents a hybrid finite volume/finite element method for the incompressible generalized Newtonian fluid flow (Power-Law model). The collocated (i.e. non-staggered) arrangement of variables is used on t... This paper presents a hybrid finite volume/finite element method for the incompressible generalized Newtonian fluid flow (Power-Law model). The collocated (i.e. non-staggered) arrangement of variables is used on the unstructured triangular grids, and a fractional step projection method is applied for the velocity-pressure coupling. The cell-centered finite volume method is employed to discretize the momentum equation and the vertex-based finite element for the pressure Poisson equation. The momentum interpolation method is used to suppress unphysical pressure wiggles. Numerical experiments demonstrate that the current hybrid scheme has second order accuracy in both space and time. Results on flows in the lid-driven cavity and between parallel walls for Newtonian and Power-Law models are also in good agreement with the published solutions. 展开更多
关键词 Generalized Newtonian fluid -finite volume method . finite element methodUnstructured grid
下载PDF
A WEIGHTED PENALTY FINITE ELEMENT METHOD FOR THE ANALYSIS OF POWER-LAW FLUID FLOW PROBLEMS
3
作者 陈大鹏 赵忠 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第4期297-300,共4页
In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an al... In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an alternative perturbation, which is weighted by viscosity, of the continuity equation. A numerical example is presented to exhibit the efficiency of the method. 展开更多
关键词 A WEIGHTED PENALTY finite element METHOD FOR THE ANALYSIS OF POWER-LAW fluid FLOW PROBLEMS
下载PDF
Numerical analysis of the effects of downhole dynamic conditions on formation testing while drilling 被引量:2
4
作者 DI Dejia TAO Guo +2 位作者 WANG Bing CHEN Xu SUN Jiming 《Petroleum Science》 SCIE CAS CSCD 2014年第3期391-400,共10页
Formation testing while drilling is an innovative technique that is replacing conventional pressure testing in which the fluid sampling is conducted in a relatively short time following the drilling. At this time, mud... Formation testing while drilling is an innovative technique that is replacing conventional pressure testing in which the fluid sampling is conducted in a relatively short time following the drilling. At this time, mud invasion has just started, mudcake has not formed entirely and the formation pressure is not stable. Therefore, it is important to study the influence of the downhole dynamic environment on pressure testing and fluid sampling. This paper applies an oil-water two phase finite element model to study the influence of mudcake quality and mud filtrate invasion on supercharge pressure, pretest and sampling in the reservoirs of different permeability. However, the study is only for the cases with water based mud in the wellbore. The results illustrate that the mudcake quality has a significant influence on the supercharge pressure and fluid sampling, while the level of mud filtrate invasion has a strong impact on pressure testing and sampling. In addition, in-situ formation pressure testing is more difficult in low permeability reservoirs as the mud filtrate invasion is deeper and therefore degrades the quality of fluid sampling. Finally, a field example from an oil field on the Alaskan North Slope is presented to validate the numerical studies of the effects of downhole dynamic conditions on formation testing while drilling. 展开更多
关键词 Formation testing while drilling formation supercharge pressure testing fluid sampling finite element method mudcake filtrate invasion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部