In this paper exact solution for a homogenous incompressible, second grade fluid in a rotating frame through porous media has been provided using hodograph-Legendre transformation method. Results are summarised in the...In this paper exact solution for a homogenous incompressible, second grade fluid in a rotating frame through porous media has been provided using hodograph-Legendre transformation method. Results are summarised in the form of theorems. Two examples have been taken and streamline patterns are shown for the solutions.展开更多
An analysis is performed for the hydromagnetic second grade fluid flow between two horizontal plates in a rotating system in the presence of a magnetic field. The lower sheet is considered to be a stretching sheet, an...An analysis is performed for the hydromagnetic second grade fluid flow between two horizontal plates in a rotating system in the presence of a magnetic field. The lower sheet is considered to be a stretching sheet, and the upper sheet is a porous solid plate. By suitable transformations, the equations of conservation of mass and momentum are reduced to a system of coupled non-linear ordinary differential equations. A series of solutions to this coupled non-linear system are obtained by a powerful analytic technique, i.e., the homotopy analysis method (HAM). The results are presented with graphs. The effects of non-dimensional parameters R, A, M2, a, and K2 on the velocity field are discussed in detail.展开更多
Three approaches based on computational fluid dynamics(CFD) techniques have been assessed for their ability to describe the engineering flow environment in a miniaturized mechanically agitated bioreactor. The three a...Three approaches based on computational fluid dynamics(CFD) techniques have been assessed for their ability to describe the engineering flow environment in a miniaturized mechanically agitated bioreactor. The three approaches tested were the source-sink(SS), the multiple reference frames(MRF) and the sliding grids(SG). In all the cases, the predictions of the velocity components agree with reported experimental data. However, the analysis of the results of the turbulent intensities predicted by the three approaches indicates the MRF and the SG techniques under predicted turbulent intensities are comparable to both experimental measurements and the SS method. The predicted power number and pumping number based on the SS approach are closer to typical reported experimental values compared to those obtained from the MRF and SG methods.展开更多
This work investigates the flow of a third grade fluid in a rotating frame of reference. The fluid is incompressible and magnetohydrodynamic (MHD). The flow is bounded between two porous plates, the lower of which i...This work investigates the flow of a third grade fluid in a rotating frame of reference. The fluid is incompressible and magnetohydrodynamic (MHD). The flow is bounded between two porous plates, the lower of which is shrinking linearly. Mathematical modelling of the considered flow leads to a nonlinear problem. The solution of this nonlinear problem is computed by the homotopy analysis method (HAM). Graphs are presented to demonstrate the effect of several emerging parameters, which clearly describe the flow characteristics.展开更多
In this study computational fluid dynamics (CFD) approach was used to study mixing in an Industrial gold leaching tank. The objective was to analyze the extent of mixing in the tank by producing visual images of the v...In this study computational fluid dynamics (CFD) approach was used to study mixing in an Industrial gold leaching tank. The objective was to analyze the extent of mixing in the tank by producing visual images of the various mixing zones in the tank domain. Eddy viscosity plots that characterise the extent of mixing in the tank were generated in the flow field obtained by an Eulerian-Eulerian approach. The extent of mixing was found to be greatest in the circulation loops of the impeller discharge region and least at the top and bottom portions of the tank. Trailing vortices that contribute to some level of mixing were identified in between the impeller blades. This approach could be used to enhance optimum design of mixing vessels and to eliminate the need for pilot plants.展开更多
文摘In this paper exact solution for a homogenous incompressible, second grade fluid in a rotating frame through porous media has been provided using hodograph-Legendre transformation method. Results are summarised in the form of theorems. Two examples have been taken and streamline patterns are shown for the solutions.
文摘An analysis is performed for the hydromagnetic second grade fluid flow between two horizontal plates in a rotating system in the presence of a magnetic field. The lower sheet is considered to be a stretching sheet, and the upper sheet is a porous solid plate. By suitable transformations, the equations of conservation of mass and momentum are reduced to a system of coupled non-linear ordinary differential equations. A series of solutions to this coupled non-linear system are obtained by a powerful analytic technique, i.e., the homotopy analysis method (HAM). The results are presented with graphs. The effects of non-dimensional parameters R, A, M2, a, and K2 on the velocity field are discussed in detail.
基金Supported by the U CL ORS Award and KC Wong Scholarshi
文摘Three approaches based on computational fluid dynamics(CFD) techniques have been assessed for their ability to describe the engineering flow environment in a miniaturized mechanically agitated bioreactor. The three approaches tested were the source-sink(SS), the multiple reference frames(MRF) and the sliding grids(SG). In all the cases, the predictions of the velocity components agree with reported experimental data. However, the analysis of the results of the turbulent intensities predicted by the three approaches indicates the MRF and the SG techniques under predicted turbulent intensities are comparable to both experimental measurements and the SS method. The predicted power number and pumping number based on the SS approach are closer to typical reported experimental values compared to those obtained from the MRF and SG methods.
文摘This work investigates the flow of a third grade fluid in a rotating frame of reference. The fluid is incompressible and magnetohydrodynamic (MHD). The flow is bounded between two porous plates, the lower of which is shrinking linearly. Mathematical modelling of the considered flow leads to a nonlinear problem. The solution of this nonlinear problem is computed by the homotopy analysis method (HAM). Graphs are presented to demonstrate the effect of several emerging parameters, which clearly describe the flow characteristics.
文摘In this study computational fluid dynamics (CFD) approach was used to study mixing in an Industrial gold leaching tank. The objective was to analyze the extent of mixing in the tank by producing visual images of the various mixing zones in the tank domain. Eddy viscosity plots that characterise the extent of mixing in the tank were generated in the flow field obtained by an Eulerian-Eulerian approach. The extent of mixing was found to be greatest in the circulation loops of the impeller discharge region and least at the top and bottom portions of the tank. Trailing vortices that contribute to some level of mixing were identified in between the impeller blades. This approach could be used to enhance optimum design of mixing vessels and to eliminate the need for pilot plants.