The P-SV wave reflection coefficients in VTI and HTI media were obtained by approximation of the Jilek(2002a and b)equation in orthotropic anisotropic media.An approximate equation for P-SV wave elastic impedance ca...The P-SV wave reflection coefficients in VTI and HTI media were obtained by approximation of the Jilek(2002a and b)equation in orthotropic anisotropic media.An approximate equation for P-SV wave elastic impedance can be derived from the combination of the new coefficients with S-wave elastic impedance(Duffaut et al.,2000).On this basis, the fluid identification factor in weakly anisotropic media was constructed and used to identify the Castagna and Smith(1994)lithologic combination and achieved good results. Finally,we specifically analyzed the anisotropic parameter impacts P-SV wave elastic impedance and fluid factor trends.展开更多
In this article,based on the acoustic measurements of core samples obtained from the low to medium porosity and permeability reservoirs in the WXS Depression,the densities and P and S wave velocities of these core sam...In this article,based on the acoustic measurements of core samples obtained from the low to medium porosity and permeability reservoirs in the WXS Depression,the densities and P and S wave velocities of these core samples were obtained.Then based on these data,a series of elastic parameters were computed.From the basic theory and previous pore fluid research results,we derived a new fluid identification factor(F).Using the relative variations,Ag/w and Ao/w,of the elastic parameters between gas and water saturated samples and between oil and water saturated samples,λρ,σHSFIF,Kρ,λρ-2μρ,and F as quantitative indicators,we evaluate the sensitivity of the different fluid identification factors to identify reservoir fluids and validate the effects by crossplots.These confirm that the new fluid identification factor(F) is more sensitive for distinguishing oil and water than the traditional method and is more favorable for fliud identification in low to medium porosity and permeability reservoirs.展开更多
基金sponsored by the National 973 Program(Grant No.2007CB209603)
文摘The P-SV wave reflection coefficients in VTI and HTI media were obtained by approximation of the Jilek(2002a and b)equation in orthotropic anisotropic media.An approximate equation for P-SV wave elastic impedance can be derived from the combination of the new coefficients with S-wave elastic impedance(Duffaut et al.,2000).On this basis, the fluid identification factor in weakly anisotropic media was constructed and used to identify the Castagna and Smith(1994)lithologic combination and achieved good results. Finally,we specifically analyzed the anisotropic parameter impacts P-SV wave elastic impedance and fluid factor trends.
基金supported by the the Key Project of Chinese Ministry of Education (Grant No.109035)the National Natural Science Foundation Key Project (Grant No.40830423)Key Projects of Students Extra-curricular Science and Technology Research Program of Schlumberger (Grant No.SLBX0908)
文摘In this article,based on the acoustic measurements of core samples obtained from the low to medium porosity and permeability reservoirs in the WXS Depression,the densities and P and S wave velocities of these core samples were obtained.Then based on these data,a series of elastic parameters were computed.From the basic theory and previous pore fluid research results,we derived a new fluid identification factor(F).Using the relative variations,Ag/w and Ao/w,of the elastic parameters between gas and water saturated samples and between oil and water saturated samples,λρ,σHSFIF,Kρ,λρ-2μρ,and F as quantitative indicators,we evaluate the sensitivity of the different fluid identification factors to identify reservoir fluids and validate the effects by crossplots.These confirm that the new fluid identification factor(F) is more sensitive for distinguishing oil and water than the traditional method and is more favorable for fliud identification in low to medium porosity and permeability reservoirs.