An unusual increase in seismicity rate near the development and production sites of unconventional energy(e.g.,natural gas and geothermal fluids)has been attributed to subsurface fluid injection.Damaging and hazardous...An unusual increase in seismicity rate near the development and production sites of unconventional energy(e.g.,natural gas and geothermal fluids)has been attributed to subsurface fluid injection.Damaging and hazardous earthquakes in many countries(e.g.,China,South Korea,and the United States)have motivated tremendous effort to understand the complexity of fault slip behaviors in response to fluid pressurization.This study reviews key characteristics of injection-induced fault slip and highlights prediction and mitigation strategies relevant to unconventional energy projects.This capability relies on adequate understanding and characterization of first-and second-order friction and stability behaviors of faults as well as impacts of fluid pressurization and its role in triggering aseismic,seismic,and transitional slip behaviors.Suitable methods of investigation and characterization are noted together with typical examples together with scientific advances in our understanding towards forewarning and mitigation.Present challenges are addressed relating to the understanding of complex secondorder friction behaviors and the location and characterization of blind faults.These needs are aided in the integration of multi-scale and multi-physical data obtained from laboratory,numerical,and field studies to offer crucial information for induced hazard preparedness and rapid run-up assessment.Finally,emerging technologies contributing to an improved understanding,such as data analytics and machine learning,are discussed in heralding the next frontier for injection-induced seismicity research.展开更多
The problem of magnetohydrodynamic (MHD) flow on a moving surface with the power-law velocity and special injection/blowing is investigated. A scaling group transformation is used to reduce the governing equations t...The problem of magnetohydrodynamic (MHD) flow on a moving surface with the power-law velocity and special injection/blowing is investigated. A scaling group transformation is used to reduce the governing equations to a system of ordinary differen- tial equations. The skin friction coefficients of the MHD boundary layer flow are derived, and the approximate solutions of the flow characteristics are obtained with the homotopy analysis method (HAM). The approximate solutions are easily computed by use of a high order iterative procedure, and the effects of the power-law index, the magnetic parameter, and the special suction/blowing parameter on the dynamics are analyzed. The obtained results are compared with the numerical results published in the literature, verifying the reliability of the approximate solutions.展开更多
São Paulo State has witnessed CO_(2)storage-based investigations considering the availability of suitable geologic structures and proximity to primary CO_(2)source sinks related to bioenergy and carbon capture an...São Paulo State has witnessed CO_(2)storage-based investigations considering the availability of suitable geologic structures and proximity to primary CO_(2)source sinks related to bioenergy and carbon capture and storage(BECCS)activities.The current study presents the hydrocarbon viability evaluations and CO_(2)storage prospects,focusing on the sandstone units of the Rio Bonito Formation.The objective is to apply petrophysical evaluations with geochemical inputs in predicting future hydrocarbon(gas)production to boost CO_(2)storage within the study location.The study used data from eleven wells with associated wireline logs(gamma ray,resistivity,density,neutron,and sonic)to predict potential hydrocarbon accumulation and fluid mobility in the investigated area.Rock samples(shale and carbonate)obtained from depths>200 m within the study location have shown bitumen presence.Organic geochemistry data of the Rio Bonito Formation shale beds suggest they are potential hydrocarbon source rocks and could have contributed to the gas accumulations within the sandstone units.Some drilled well data,e.g.,CB-1-SP and TI-1-SP,show hydrocarbon(gas)presence based on the typical resistivity and the combined neutron-density responses at depths up to 3400 m,indicating the possibility of other hydrocarbon members apart from the heavy oil(bitumen)observed from the near-surface rocks samples.From the three-dimensional(3-D)model,the free fluid indicator(FFI)is more significant towards the southwest and southeast of the area with deeper depths of occurrence,indicating portions with reasonable hydrocarbon recovery rates and good prospects for CO_(2)injection,circulation and permanent storage.However,future studies based on contemporary datasets are required to establish the hydrocarbon viability further,foster gas production events,and enhance CO_(2)storage possibilities within the region.展开更多
In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with f...In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with fluid injection in the laboratory. Furthermore, we tested a number of numerical models using the FLAC;modeling software to find the best model to represent the experimental results. The high-speed multichannel acoustic emission(AE) waveform recording system used in this study made it possible to examine the total fracture process through detailed monitoring of AE hypocenters and seismic velocity.The experimental results show that injecting high-pressure oil into the rock sample can induce AE activity at very low stress levels and can dramatically reduce the strength of the rock. The results of the numerical simulations show that major experimental results, including the strength, the temporal and spatial patterns of the AE events, and the role of the fluid can be represented fairly well by a model involving(1) randomly distributed defect elements to model pre-existing cracks,(2) random modification of rock properties to represent inhomogeneity introduced by different mineral grains, and(3)macroscopic inhomogeneity. Our study, which incorporates laboratory experiments and numerical simulations, indicates that such an approach is helpful in finding a better model not only for simulating experimental results but also for upscaling purposes.展开更多
Natural fractures are generally well developed in most hydrocarbon and geothermal reservoirs,which can produce complex fracture networks due to the activation of fractures during hydraulic stimulation.The present pape...Natural fractures are generally well developed in most hydrocarbon and geothermal reservoirs,which can produce complex fracture networks due to the activation of fractures during hydraulic stimulation.The present paper is devoted to developing a method to investigate the activation characteristics of fracture under injection-shearing coupled condition at laboratory scale.The fluid is injected into the single-fractured granite until the fracture is activated based on the triaxial direct shear tests.The results show that injection process can significantly influence the shear stress distribution field,resulting in release of shear stress and relative slip between the opposite sides of the fractured surface.The injectioninduced activation of fracture is strongly dependent on the stress states.When the normal stress increases,the injection-induced activation pressure increases,and the comparatively high normal stress can restrain the fracture activation.The fracture deformation mechanisms during fluid injection are also discussed preliminarily with the experimental data.The sensitivity of shear stress to fluid injection increases with increase of shear stress level,while it decreases under high normal stress.The results can facilitate our understanding of the natural fracture activation behavior during fluid pressure stimulation.展开更多
Experiments were conducted on a lab-scale fluidized bed to study the distribution of liquid ethanol injected into fluidized catalyst particles. Electrical capacitance measurements were used to study the liquid distrib...Experiments were conducted on a lab-scale fluidized bed to study the distribution of liquid ethanol injected into fluidized catalyst particles. Electrical capacitance measurements were used to study the liquid distribution inside the bed, and a new method was developed to determine the liquid content inside fluidized beds of fluid catalytic cracking particles. The results shed light on the complex liquid injection region and reveal the strong effect of superficial gas velocity on liquid distribution inside the fluidized bed, which is also affected by the imbibition of liquid inside particle pores. Particle internal porosity was found to play a major role when the changing mass of liquid in the bed was monitored. The results also showed that the duration of liquid injection affected liquid-solid contact inside the bed and that liouid-solid mixin~ was not homogeneous durin~ the limited liouid injection time.展开更多
lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace b...lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center.展开更多
In the Sichuan Basin,seismic activity has been low historically,but in the past few decades,a series of moderate to strong earthquakes have occurred.Especially since 2015,earthquake activity has seen an unprecedented ...In the Sichuan Basin,seismic activity has been low historically,but in the past few decades,a series of moderate to strong earthquakes have occurred.Especially since 2015,earthquake activity has seen an unprecedented continuous growth trend,and the magnitude of events is increasing.Following the M5.7 Xingwen earthquake on 18 Dec.2018,which was suggested to be induced by shale gas hydraulic fracturing,a swarm of earthquakes with a maximum magnitude up to M6.0 struck Changning and the surrounding counties.Questions arose about the possible involvement of industrial actions in these destructive events.In fact,underground fluid injection in salt mine fields has been occurring in the Sichuan Basin for more than70 years.Disposal of wastewater in natural gas fields has also continued for about 40 years.Since 2008,injection for shale gas development in the southern Sichuan Basin has increased rapidly.The possible link between the increasing seismicity and increasing injection activity is an important issue.Although surrounded by seismically active zones to the southwest and northwest,the Sichuan Basin is a rather stable region with a wide range of geological settings.First,we present a brief review of earthquakes of magnitude 5 or higher since 1600 to obtain the long-term event rate and explore the possible link between the rapidly increasing trend of seismic activity and industrial injection activities in recent decades.Second,based on a review of previous research results,combined with the latest data,we describe a comprehensive analysis of the characteristics and occurrence conditions of natural and injection-induced major seismic clusters in the Sichuan Basin since 1700.Finally,we list some conclusions and insights,which provide a better understanding of why damaging events occur so that they can either be avoided or mitigated,point out scientific questions that need urgent research,and propose a general framework based on geomechanics for assessment and management of earthquake-related risks.展开更多
It has long been known that human activities such as waste fluid disposal and reservoir impoundment may cause earthquakes. Recently, anthropogenic activities to tackle the increasing energy demand and to address clima...It has long been known that human activities such as waste fluid disposal and reservoir impoundment may cause earthquakes. Recently, anthropogenic activities to tackle the increasing energy demand and to address climate change issues are also reported to induce earthquakes. These activities have a common attribute in that fluids are injected and extracted underground and induce spatiotemporal changes of pore pressure and stress, which may cause slip on faults. Induced earthquakes not only pose significant impacts on seismic hazard assessment and preparation, but also raise the question to the society as how to balance the economic needs of resources development and the public's concerns about potential environmental impacts. Here we review the observations of fluid-injection/extraction induced earthquakes, ground deformation associated with these activities, and their physical mechanisms. Furthermore, we discuss the influences of induced earthquakes on seismic hazard models, regulatory policies on these anthropogenic activities, and current development of academic, industrial and government initiatives and collaborations in order to understand this intriguing phenomenon and address associated challenges.展开更多
This paper uses a fully coupled framework of thermal-hydraulic-mechanical processes to investigate how the injection and extraction of fluid within a geothermal reservoir impacts on the distributions of temperature, p...This paper uses a fully coupled framework of thermal-hydraulic-mechanical processes to investigate how the injection and extraction of fluid within a geothermal reservoir impacts on the distributions of temperature, pore pressure, and deformation within the rock formations. Based on this formulation, a numerical model is developed in light of the thermodynamics of porous materials. The proposed procedure relies on the derivation of dissipative flow rules by postulating proper storage and dissipation functions. This approach opens new horizons for several resource engineering applications. Since it allows for full coupling, this formulation can play a key role in predicting risks when used for reservoir simulation. The results indicate that the injection-extraction process and temperature change have a definite impact on altering the in-situ properties of the reservoir.展开更多
基金supported by National Research Foundation,Singapore under its Intra-CREATE Thematic Grant(Award No.NRF2019-THE001-0002).
文摘An unusual increase in seismicity rate near the development and production sites of unconventional energy(e.g.,natural gas and geothermal fluids)has been attributed to subsurface fluid injection.Damaging and hazardous earthquakes in many countries(e.g.,China,South Korea,and the United States)have motivated tremendous effort to understand the complexity of fault slip behaviors in response to fluid pressurization.This study reviews key characteristics of injection-induced fault slip and highlights prediction and mitigation strategies relevant to unconventional energy projects.This capability relies on adequate understanding and characterization of first-and second-order friction and stability behaviors of faults as well as impacts of fluid pressurization and its role in triggering aseismic,seismic,and transitional slip behaviors.Suitable methods of investigation and characterization are noted together with typical examples together with scientific advances in our understanding towards forewarning and mitigation.Present challenges are addressed relating to the understanding of complex secondorder friction behaviors and the location and characterization of blind faults.These needs are aided in the integration of multi-scale and multi-physical data obtained from laboratory,numerical,and field studies to offer crucial information for induced hazard preparedness and rapid run-up assessment.Finally,emerging technologies contributing to an improved understanding,such as data analytics and machine learning,are discussed in heralding the next frontier for injection-induced seismicity research.
基金Project supported by the National Natural Science Foundation of China(Nos.51276014 and 51406008)
文摘The problem of magnetohydrodynamic (MHD) flow on a moving surface with the power-law velocity and special injection/blowing is investigated. A scaling group transformation is used to reduce the governing equations to a system of ordinary differen- tial equations. The skin friction coefficients of the MHD boundary layer flow are derived, and the approximate solutions of the flow characteristics are obtained with the homotopy analysis method (HAM). The approximate solutions are easily computed by use of a high order iterative procedure, and the effects of the power-law index, the magnetic parameter, and the special suction/blowing parameter on the dynamics are analyzed. The obtained results are compared with the numerical results published in the literature, verifying the reliability of the approximate solutions.
基金sponsored by Fundação de Amparoa Pesquisa do Estado de São Paulo(FAPESP)(2014/50279-4,2020/15230-5,2021/06158-1)Shell Brasil.
文摘São Paulo State has witnessed CO_(2)storage-based investigations considering the availability of suitable geologic structures and proximity to primary CO_(2)source sinks related to bioenergy and carbon capture and storage(BECCS)activities.The current study presents the hydrocarbon viability evaluations and CO_(2)storage prospects,focusing on the sandstone units of the Rio Bonito Formation.The objective is to apply petrophysical evaluations with geochemical inputs in predicting future hydrocarbon(gas)production to boost CO_(2)storage within the study location.The study used data from eleven wells with associated wireline logs(gamma ray,resistivity,density,neutron,and sonic)to predict potential hydrocarbon accumulation and fluid mobility in the investigated area.Rock samples(shale and carbonate)obtained from depths>200 m within the study location have shown bitumen presence.Organic geochemistry data of the Rio Bonito Formation shale beds suggest they are potential hydrocarbon source rocks and could have contributed to the gas accumulations within the sandstone units.Some drilled well data,e.g.,CB-1-SP and TI-1-SP,show hydrocarbon(gas)presence based on the typical resistivity and the combined neutron-density responses at depths up to 3400 m,indicating the possibility of other hydrocarbon members apart from the heavy oil(bitumen)observed from the near-surface rocks samples.From the three-dimensional(3-D)model,the free fluid indicator(FFI)is more significant towards the southwest and southeast of the area with deeper depths of occurrence,indicating portions with reasonable hydrocarbon recovery rates and good prospects for CO_(2)injection,circulation and permanent storage.However,future studies based on contemporary datasets are required to establish the hydrocarbon viability further,foster gas production events,and enhance CO_(2)storage possibilities within the region.
基金supported by State Key Laboratory of Earthquake Dynamics,China
文摘In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with fluid injection in the laboratory. Furthermore, we tested a number of numerical models using the FLAC;modeling software to find the best model to represent the experimental results. The high-speed multichannel acoustic emission(AE) waveform recording system used in this study made it possible to examine the total fracture process through detailed monitoring of AE hypocenters and seismic velocity.The experimental results show that injecting high-pressure oil into the rock sample can induce AE activity at very low stress levels and can dramatically reduce the strength of the rock. The results of the numerical simulations show that major experimental results, including the strength, the temporal and spatial patterns of the AE events, and the role of the fluid can be represented fairly well by a model involving(1) randomly distributed defect elements to model pre-existing cracks,(2) random modification of rock properties to represent inhomogeneity introduced by different mineral grains, and(3)macroscopic inhomogeneity. Our study, which incorporates laboratory experiments and numerical simulations, indicates that such an approach is helpful in finding a better model not only for simulating experimental results but also for upscaling purposes.
基金The financial support by the National Key Research and Development Program of China(Grant No.2018YFC0809601)the National Natural Science Foundation of China(Grant No.51779252)+1 种基金the Major Technological Innovation Projects of Hubei,China(Grant No.2017AAA128)the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)for this work are gratefully acknowledged。
文摘Natural fractures are generally well developed in most hydrocarbon and geothermal reservoirs,which can produce complex fracture networks due to the activation of fractures during hydraulic stimulation.The present paper is devoted to developing a method to investigate the activation characteristics of fracture under injection-shearing coupled condition at laboratory scale.The fluid is injected into the single-fractured granite until the fracture is activated based on the triaxial direct shear tests.The results show that injection process can significantly influence the shear stress distribution field,resulting in release of shear stress and relative slip between the opposite sides of the fractured surface.The injectioninduced activation of fracture is strongly dependent on the stress states.When the normal stress increases,the injection-induced activation pressure increases,and the comparatively high normal stress can restrain the fracture activation.The fracture deformation mechanisms during fluid injection are also discussed preliminarily with the experimental data.The sensitivity of shear stress to fluid injection increases with increase of shear stress level,while it decreases under high normal stress.The results can facilitate our understanding of the natural fracture activation behavior during fluid pressure stimulation.
文摘Experiments were conducted on a lab-scale fluidized bed to study the distribution of liquid ethanol injected into fluidized catalyst particles. Electrical capacitance measurements were used to study the liquid distribution inside the bed, and a new method was developed to determine the liquid content inside fluidized beds of fluid catalytic cracking particles. The results shed light on the complex liquid injection region and reveal the strong effect of superficial gas velocity on liquid distribution inside the fluidized bed, which is also affected by the imbibition of liquid inside particle pores. Particle internal porosity was found to play a major role when the changing mass of liquid in the bed was monitored. The results also showed that the duration of liquid injection affected liquid-solid contact inside the bed and that liouid-solid mixin~ was not homogeneous durin~ the limited liouid injection time.
基金We gratefully acknowledge the support of the National Basic Research Program of China (973 Program) (No. 2012CB720401 ) and the Key Project of National Natural Science Foundation of China (No. 51134008).
文摘lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center.
基金support of the State Scholarship Fund of China(Grant No.201804190004)。
文摘In the Sichuan Basin,seismic activity has been low historically,but in the past few decades,a series of moderate to strong earthquakes have occurred.Especially since 2015,earthquake activity has seen an unprecedented continuous growth trend,and the magnitude of events is increasing.Following the M5.7 Xingwen earthquake on 18 Dec.2018,which was suggested to be induced by shale gas hydraulic fracturing,a swarm of earthquakes with a maximum magnitude up to M6.0 struck Changning and the surrounding counties.Questions arose about the possible involvement of industrial actions in these destructive events.In fact,underground fluid injection in salt mine fields has been occurring in the Sichuan Basin for more than70 years.Disposal of wastewater in natural gas fields has also continued for about 40 years.Since 2008,injection for shale gas development in the southern Sichuan Basin has increased rapidly.The possible link between the increasing seismicity and increasing injection activity is an important issue.Although surrounded by seismically active zones to the southwest and northwest,the Sichuan Basin is a rather stable region with a wide range of geological settings.First,we present a brief review of earthquakes of magnitude 5 or higher since 1600 to obtain the long-term event rate and explore the possible link between the rapidly increasing trend of seismic activity and industrial injection activities in recent decades.Second,based on a review of previous research results,combined with the latest data,we describe a comprehensive analysis of the characteristics and occurrence conditions of natural and injection-induced major seismic clusters in the Sichuan Basin since 1700.Finally,we list some conclusions and insights,which provide a better understanding of why damaging events occur so that they can either be avoided or mitigated,point out scientific questions that need urgent research,and propose a general framework based on geomechanics for assessment and management of earthquake-related risks.
基金supported by the NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant Nos. N_CUHK418/15, N_CUHK430/16)CUHK-University of Manchester Research Fund (Grant No. 4930227)+4 种基金United States National Science Foundation (Grant No. OCE-1357433)Natural Sciences and Engineering Research Council of Canada (Grant No. STPGP 494141-16)Japan Society for the Promotion of Science (Grant Nos. KAKENHI 2624004, 26280006)National Natural Science Foundation of China (Grant No. 41474033)the Summer School Program of Peking University
文摘It has long been known that human activities such as waste fluid disposal and reservoir impoundment may cause earthquakes. Recently, anthropogenic activities to tackle the increasing energy demand and to address climate change issues are also reported to induce earthquakes. These activities have a common attribute in that fluids are injected and extracted underground and induce spatiotemporal changes of pore pressure and stress, which may cause slip on faults. Induced earthquakes not only pose significant impacts on seismic hazard assessment and preparation, but also raise the question to the society as how to balance the economic needs of resources development and the public's concerns about potential environmental impacts. Here we review the observations of fluid-injection/extraction induced earthquakes, ground deformation associated with these activities, and their physical mechanisms. Furthermore, we discuss the influences of induced earthquakes on seismic hazard models, regulatory policies on these anthropogenic activities, and current development of academic, industrial and government initiatives and collaborations in order to understand this intriguing phenomenon and address associated challenges.
文摘This paper uses a fully coupled framework of thermal-hydraulic-mechanical processes to investigate how the injection and extraction of fluid within a geothermal reservoir impacts on the distributions of temperature, pore pressure, and deformation within the rock formations. Based on this formulation, a numerical model is developed in light of the thermodynamics of porous materials. The proposed procedure relies on the derivation of dissipative flow rules by postulating proper storage and dissipation functions. This approach opens new horizons for several resource engineering applications. Since it allows for full coupling, this formulation can play a key role in predicting risks when used for reservoir simulation. The results indicate that the injection-extraction process and temperature change have a definite impact on altering the in-situ properties of the reservoir.