期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Fluid Property Discrimination in Dolostone Reservoirs Using Well Logs 被引量:5
1
作者 WANG Guiwen LAI Jin +5 位作者 LIU Bingchang FAN Zhuoying LIU Shichen SHI Yujiang ZHANG Haitao CHEN Jing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第3期831-846,共16页
The Ordovician Majiagou Formation is one of the main gas-producing strata in the Ordos Basin,China.The identification of hydrocarbon-bearing intervals via conventional well logs is a challenging task.This study descri... The Ordovician Majiagou Formation is one of the main gas-producing strata in the Ordos Basin,China.The identification of hydrocarbon-bearing intervals via conventional well logs is a challenging task.This study describes the litholog of Ma 5(Member 5 of Majiagou Formation)dolostones,and then analyzes the responses of various conventional well logs to the presences of natural gas.The lithology of the gas bearing layers is dominantly of the dolomicrite to fine to medium crystalline dolomite.Natural gas can be produced from the low resistivity layers,and the dry layers are characterized by high resistivities.Neutron-density crossovers are not sensitive to the presences of natural gas.In addition,there are no significant increases in sonic transit times in natural gas bearing layers.NMR(nuclear magnetic resonance)logs,DSI(Dipole Sonic Imager)logs and borehole image logs(XRMI)are introduced to discriminate the fluid property in Majiagou dolostone reservoirs.The gas bearing intervals have broad NMR T2(transverse relaxation time)spectrum with tail distributions as well as large T2gm(T2 logarithmic mean values)values,and the T2 spectrum commonly display polymodal behaviors.In contrast,the dry layers and water layers have low T2gm values and very narrow T2 spectrum without tails.The gas bearing layers are characterized by low Vp/Vs ratios,low Poisson’s ratios and low P-wave impedances,therefore the fluid property can be discriminated using DSI logs,and the interpretation results show good matches with the gas test data.The apparent formation water resistivity(AFWR)spectrum can be derived from XRMI image logs by using the Archie’s formula in the flushed zone.The gas bearing layers have broad apparent formation water resistivity spectrum and tail distributions compared with the dry and water layers,and also the interpretation results from the image logs exhibit good agreement with the gas test data.The fluid property in Majiagou dolostone reservoirs can be discriminated through NMR logs,DSI logs and borehole image logs.This study helps establish a predictable model for fluid property in dolostones,and have implications in dolostone reservoirs with similar geological backgrounds worldwide. 展开更多
关键词 fluid property NMR DSI image logs Majiagou Formation Ordos Basin
下载PDF
Studies on Thermal Stability and Fluid Property of PVC Filled with Hydrotalcite 被引量:1
2
作者 ZHANG Qiang LU Jie-bin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2002年第4期424-426,共3页
Hydrotalcite can act as a co-stabilizer with other main stabilizer for poly(vinyl chloride)(PVC). The thermal stability and fluid property of PVC filled with hydrotalcite surface-treated with titanate and silane were ... Hydrotalcite can act as a co-stabilizer with other main stabilizer for poly(vinyl chloride)(PVC). The thermal stability and fluid property of PVC filled with hydrotalcite surface-treated with titanate and silane were studied in this work. Organic Sn is a main stabilizer and hydrotalcite is a stabilizing assistant. The stability of the PVC resin mixed with organic Sn and hydrotalcite is better than that of the PVC resin mixed with organic Sn alone. It is shown that the PVC resin filled with hydrotalcite possesses a better static and dynamic heat stability. Moreover, hydrotalcite can improve the fluid property of PVC, which is advantageous to the processing of PVC, and the optimum content of hydrotalcite is about 1%-2%(mass fraction). 展开更多
关键词 HYDROTALCITE PVC Thermal stability fluid property
下载PDF
Study of hybrid nanofluid flow in a stationary cone-disk system with temperature-dependent fluid properties
3
作者 A.S.JOHN B.MAHANTHESH G.LORENZINI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期677-694,共18页
Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid na... Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect. 展开更多
关键词 hybrid nanofluid cone-disk system laminar flow variable fluid property Nusselt number
下载PDF
Dynamic fluid transport property of hydraulic fractures and its evaluation using acoustic logging
4
作者 LI Huanran TANG Xiaoming +1 位作者 LI Shengqing SU Yuanda 《Petroleum Exploration and Development》 CSCD 2022年第1期223-232,共10页
The existing acoustic logging methods for evaluating the hydraulic fracturing effectiveness usually use the fracture density to evaluate the fracture volume, and the results often cannot accurately reflect the actual ... The existing acoustic logging methods for evaluating the hydraulic fracturing effectiveness usually use the fracture density to evaluate the fracture volume, and the results often cannot accurately reflect the actual productivity. This paper studies the dynamic fluid flow through hydraulic fractures and its effect on borehole acoustic waves. Firstly, based on the fractal characteristics of fractures observed in hydraulic fracturing experiments, a permeability model of complex fracture network is established. Combining the dynamic fluid flow response of the model with the Biot-Rosenbaum theory that describes the acoustic wave propagation in permeable formations, the influence of hydraulic fractures on the velocity dispersion of borehole Stoneley-wave is then calculated and analyzed, whereby a novel hydraulic fracture fluid transport property evaluation method is proposed. The results show that the Stoneley-wave velocity dispersion characteristics caused by complex fractures can be equivalent to those of the plane fracture model, provided that the average permeability of the complex fracture model is equal to the permeability of the plane fracture. In addition, for fractures under high-permeability(fracture width 10~100 μm, permeability ~100 μm^(2)) and reduced permeability(1~10 μm, ~10 μm^(2), as in fracture closure) conditions, the Stoneley-wave velocity dispersion characteristics are significantly different. The field application shows that this fluid transport property evaluation method is practical to assess the permeability and the connectivity of hydraulic fractures. 展开更多
关键词 hydraulic fracture dynamic fluid transport property acoustic logging Stoneley-wave velocity dispersion fracture characterization
下载PDF
Evaluation of Hydrocarbon Potential Using AVO Analysis in the FORMAT Field, Niger Delta Basin, Nigeria
5
作者 Charles Chibueze Ugbor Onyebuchi Samuel Onyeabor Ifeanyi Celestine Ugwuoke 《Open Journal of Geology》 CAS 2024年第3期403-430,共28页
The study involved the evaluation of the hydrocarbon potential of FORMAT Field, coastal swamp depobelt Niger delta, Nigeria to obtain a more efficient reservoir characterization and fluid properties identification. De... The study involved the evaluation of the hydrocarbon potential of FORMAT Field, coastal swamp depobelt Niger delta, Nigeria to obtain a more efficient reservoir characterization and fluid properties identification. Despite advances in seismic data interpretation using traditional 3D seismic data interpretation, obtaining adequate reservoir characteristics at the finest level had proved very challenging with often disappointing results. A method that integrates the amplitude variation with offfset (AVO) analysis is hereby proposed to better illuminate the reservoir. The Hampson Russell 10.3 was used to integrate and study the available seismic and well data. The reservoir of interest was delineated using the available suite of petrophysical data. This was marked by low gamma ray, high resistivity, and low acoustic impedance between a true subsea vertical depth (TVDss) range of 10,350 - 10,450 ft. The AVO fluid substitution yielded a decrease in the density values of pure gas (2.3 - 1.6 g/cc), pure oil (2.3 - 1.8 g/cc) while the Poisson pure brine increased (2.3 to 2.8 g/cc). Result from FORMAT 26 plots yielded a negative intercept and negative gradient at the top and a positive intercept and positive gradient at the Base which conforms to Class III AVO anomaly. FORMAT 30 plots yielded a negative intercept and positive gradient at the top and a positive intercept and negative gradient at the Base which conforms to class IV AVO anomaly. AVO attribute volume slices decreased in the Poisson ratio (0.96 to - 1.0) indicating that the reservoir contains hydrocarbon. The s-wave reflectivity and the product of the intercept and gradient further clarified that there was a Class 3 gas sand in the reservoir and the possibility of a Class 4 gas sand anomaly in that same reservoir. 展开更多
关键词 AVO Analysis Hydrocarbon Potential fluid Properties Reservoir Characterization Petrophysical Data Hampson Russel
下载PDF
Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity 被引量:2
6
作者 Ahmed M. Megahed 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期480-485,共6页
The effects of variable fluid properties and variable heat flux on the flow and heat transfer of a non-Newtonian Maxwell fluid over an unsteady stretching sheet in the presence of slip velocity have been studied. The ... The effects of variable fluid properties and variable heat flux on the flow and heat transfer of a non-Newtonian Maxwell fluid over an unsteady stretching sheet in the presence of slip velocity have been studied. The governing differential equations are transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the fourth-order Runge-Kutta method coupled with the shooting technique over the entire range of physical parameters. The effects of various parameters like the viscosity parameter, thermal conductivity parameter, unsteadiness parameter, slip velocity parameter, the Deborah number, and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. Comparison of numerical results is made with the earlier published results under limiting cases. 展开更多
关键词 Maxwell fluid unsteady stretching sheet variable fluid properties variable heat flux
下载PDF
Evaluation of gas wettability and its effects on fluid distribution and fluid flow in porous media 被引量:10
7
作者 Jiang Guancheng Li Yingying Zhang Min 《Petroleum Science》 SCIE CAS CSCD 2013年第4期515-527,共13页
The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferent... The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance. 展开更多
关键词 Gas-wetting fluorocarbon copolymer contact angle capillary pressure surface free energy surface property fluid flow in porous media
下载PDF
Variable fluid properties and thermal radiation effects on flow and heat transfer in micropolar fluid film past moving permeable infinite flat plate with slip velocity
8
作者 M.A.A.MAHMOUD S.E.WAHEED 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第5期663-678,共16页
This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate with a slip veloc... This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate with a slip velocity. The fluid viscosity and the thermal conductivity are assumed to be the functions of temperature. The equations governing the flow are solved numerically by the Chebyshev spectral method for some representative value of various parameters. In comparison with the previously published work, the excellent agreement is shown. The effects of various parameters on the velocity, the microrotation velocity, and the temperature profiles, as well as the skin-friction coefficient and the Nusselt number, are plotted and discussed. 展开更多
关键词 micropolar fluid thin film slip velocity variable fluid properties thermalradiation Chebyshev spectral method
下载PDF
Influences of fluid physical properties,solid particles,and operating conditions on the hydrodynamics in slurry reactors
9
作者 He Yang Aqiang Chen +4 位作者 Shujun Geng Jingcai Cheng Fei Gao Qingshan Huang Chao Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期51-71,共21页
Slurry reactors are popular in many industrial processes,involved with numerous chemical and biological mixtures,solid particles with different concentrations and properties,and a wide range of operating conditions.Th... Slurry reactors are popular in many industrial processes,involved with numerous chemical and biological mixtures,solid particles with different concentrations and properties,and a wide range of operating conditions.These factors can significantly affect the hydrodynamic in the slurry reactors,having remarkable effects on the design,scale-up,and operation of the slurry reactors.This article reviews the influences of fluid physical properties,solid particles,and operating conditions on the hydrodynamics in slurry reactors.Firstly,the influence of fluid properties,including the density and viscosity of the individual liquid and gas phases and the interfacial tension,has been reviewed.Secondly,the solid particle properties(i.e.,concentration,density,size,wettability,and shape)on the hydrodynamics have been discussed in detail,and some vital but often ignored features,especially the influences of particle wettability and shape,as well as the variation of surface tension because of solid concentration alteration,are highlighted in this work.Thirdly,the variations of physical properties of fluids,hydrodynamics,and bubble behavior resulted from the temperature and pressure variations are also summarized,and the indirect influences of pressure on viscosity and surface tension are addressed systematically.Finally,conclusions and perspectives of these notable influences on the design and scale-up of industrial slurry reactors are presented. 展开更多
关键词 Multiphase reactors fluid physical properties PARTICLE Operating conditions Bubble column Airlift loop reactor
下载PDF
Evaluating the potential of surface-modified silica nanoparticles using internal olefin sulfonate for enhanced oil recovery 被引量:1
10
作者 Afaque Ahmed Ismail Mohd Saaid +2 位作者 Abdelazim Abbas Ahmed Rashidah M.Pilus Mirza Khurram Baig 《Petroleum Science》 SCIE CAS CSCD 2020年第3期722-733,共12页
Recently,nanoparticles have proven to enhance oil recovery on the core-flood scale in challenging high-pressure high-temperature reservoirs.Nanomaterials generally appear to improve oil production through wettability ... Recently,nanoparticles have proven to enhance oil recovery on the core-flood scale in challenging high-pressure high-temperature reservoirs.Nanomaterials generally appear to improve oil production through wettability alteration and reduction in interfacial tension between oil and water phases.Besides,they are environmentally friendly and cost-effective enhanced oil recovery techniques.Studying the rheological properties of nanoparticles is critical for field applications.The instability of nanoparticle dispersion due to aggregation is considered as an unfavorable phenomenon in nanofluid flooding while conducting an EOR process.In this study,wettability behavior and rheological properties of surface-treated silica nanoparticles using internal olefins sulfonates(IOS20–24 and IOS19–23),anionic surfactants were investigated.Surface modification effect on the stability of the colloidal solution in porous media and oil recovery was inspected.The rheology of pure and surfacetreated silica nanoparticles was investigated using a HPHT rheometer.Morphology and particle size distributions of pure and coated silica nanoparticles were studied using a field emission scanning electron microscope.A series of core-flood runs was conducted to evaluate the oil recovery factor.The coated silica nanoparticles were found to alter rheological properties and exhibited a shear-thinning behavior as the stability of the coated silica nanoparticles could be improved considerably.At low shear rates,the viscosity slightly increases,and the opposite happens at higher shear rates.Furthermore,the surfacemodified silica nanoparticles were found to alter the wettability of the aqueous phase into strongly water-wet by changing the contact angle from 80°to 3°measured against glass slides representing sandstone rocks.Oil–water IFT results showed that the surface treatment by surfactant lowered the oil–water IFT by 30%.Also,the viscosity of brine increased from 0.001 to 0.008 Pa s by introducing SiO2 nanoparticles to the aqueous phase for better displacement efficiency during chemicalassisted EOR.The core-flood experiments revealed that the ultimate oil recovery is increased by approximately 13%with a surfactant-coated silica nanofluid flood after the conventional waterflooding that proves the potential of smart nanofluids for enhancing oil recovery.The experimental results imply that the use of surfactant-coated nanoparticles in tertiary oil recovery could facilitate the displacement efficiency,alter the wettability toward more water-wet and avoid viscous fingering for stable flood front and additional oil recovery. 展开更多
关键词 Silica nanoparticles Anionic surfactant Rheological properties of nano fluids Wettability alteration Enhanced oil recovery
下载PDF
A High-Mathematical Model Optimizing Cuttings Transport in Oil Drilling Engineering
11
作者 Ibrahim A A Fadoul A M Musa T A Yao AiguoEngineering Faculty, China University of Geosciences, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2001年第3期276-278,共3页
With special drilling operation equipment and specific conditions of geology, how does drilling fluid carry cuttings effectively? So far, it is still an urgent problem for drilling researchers to study. This work just... With special drilling operation equipment and specific conditions of geology, how does drilling fluid carry cuttings effectively? So far, it is still an urgent problem for drilling researchers to study. This work just aims at the actual engineering background to develop studying model. In this paper, according to non Newtonian fluid mechanics, the law of the solid liquid, two phase fluid flow and actual drilling engineering, the major factors affecting cuttings transport are drilling fluid velocity, hole inclination and fluid rheological properties. Getting a clear understanding of the law of drilling fluid and its cutting taking mechanism, this paper puts forward a model for analysis of field data and quantitative forecast of cutting taking capability of drilling fluid. The full scale annular test section was 6.1 m with 76 and 114 mm drillpipe in a 203 mm ID (wellbore diameter). Hole angle varied from 0° to 90°. 展开更多
关键词 cuttings transport drilling fluid velocity hole inclination fluid rheological properties hole eccentricity.
下载PDF
Shale characteristics impact on Nuclear Magnetic Resonance (NMR) fluid typing methods and correlations 被引量:11
12
作者 Mohamed Mehana Ilham El-monier 《Petroleum》 2016年第2期138-147,共10页
The development of shale reservoirs has brought a paradigm shift in the worldwide energy equation.This entails developing robust techniques to properly evaluate and unlock the potential of those reservoirs.The applica... The development of shale reservoirs has brought a paradigm shift in the worldwide energy equation.This entails developing robust techniques to properly evaluate and unlock the potential of those reservoirs.The application of Nuclear Magnetic Resonance techniques in fluid typing and properties estimation is well-developed in conventional reservoirs.However,Shale reservoirs characteristics like pore size,organic matter,clay content,wettability,adsorption,and mineralogy would limit the applicability of the used interpretation methods and correlation.Some of these limitations include the inapplicability of the controlling equations that were derived assuming fast relaxation regime,the overlap of different fluids peaks and the lack of robust correlation to estimate fluid properties in shale.This study presents a state-of-the-art review of the main contributions presented on fluid typing methods and correlations in both experimental and theoretical side.The study involves Dual Tw,Dual Te,and doping agent's application,T1-T2,D-T2 and T2sec vs.T1/T2 methods.In addition,fluid properties estimation such as density,viscosity and the gas-oil ratio is discussed.This study investigates the applicability of these methods along with a study of the current fluid properties correlations and their limitations.Moreover,it recommends the appropriate method and correlation which are capable of tackling shale heterogeneity. 展开更多
关键词 SHALE fluid typing fluid properties HETEROGENEITY Nuclear Magnetic Resonance
原文传递
Effects of variable fluid properties on the thin film flow of Ostwald-de Waele fluid over a stretching surface 被引量:1
13
作者 VAJRAVELU K. PRASAD K. V. RAJU B. T. 《Journal of Hydrodynamics》 SCIE EI CSCD 2013年第1期10-19,共10页
We investigate, in this paper, the effects of thermo-physical properties on the flow and heat transfer in a thin film of a power-law liquid over a horizontal stretching surface in the presence of a viscous dissipation... We investigate, in this paper, the effects of thermo-physical properties on the flow and heat transfer in a thin film of a power-law liquid over a horizontal stretching surface in the presence of a viscous dissipation. The fluid properties, namely the fluid viscosity and the fluid thermal conductivity, are assumed to vary with temperature. Using a similarity transformation, the governing partial differential equations with a time dependent boundary are converted into coupled non-linear Ordinary Differential Equations (ODEs) with variable coefficients. Numerical solutions of the coupled ODEs are obtained by a finite difference scheme known as the Keller-box method. Results for the velocity and temperature distributions are presented graphically for different values of the pertinent parameters. The effects of unsteady parameter on the skin friction, the wall temperature gradient and the film thickness are presented and analyzed for zero and non-zero values of the temperature-dependent thermo-physical properties. The results obtained reveal many interesting features that warrant further study on the non-Newtonian thin film fluid flow phenomena, especially the shear-thinning phenomena. 展开更多
关键词 Thin film flow variable fluid properties viscous dissipation finite difference method
原文传递
Geoacoustic model and acoustic reflection properties of fluid mud layer in Changjiang Estuary and Hangzhou Bay
14
作者 ZHANG Shuying(Shanghai Acoustics Laboratory, Academia Sinica Shanghai 200032)YANG Ting MA Zaitai(Tongji University Shanghai 200092) 《Chinese Journal of Acoustics》 1999年第1期1-9,共9页
A generalized geoacoustic model of fluid mud layer in Chanaiiang Estuary and Hangzhou Bay has been derived from a large amount of in-situ measurements of bulk density (p) profiles of the lay6rs and of lab measurements... A generalized geoacoustic model of fluid mud layer in Chanaiiang Estuary and Hangzhou Bay has been derived from a large amount of in-situ measurements of bulk density (p) profiles of the lay6rs and of lab measurements of acoustic velocities (c) and attenuation coefficients (o) of the fluid mud samples with different values of p for four frequencies of 100 kHz, 150 kHz, 500 kHz, 1500 kHz. The main features of the geoacoustic model can be expressed as follows: from the upper boundary, the bulk density of the fiuid mud increases linearly with depth z, however there is a gradient change (knee) when p is about 12.5 kN/m', then p increases linearly to a value about 15.0 kN/m'. After p more than 15.0, the fluid mud layer quickly transform into an ooze layer. In the fluid mud layer, the acoustic velocity c can be regarded as constant since its variation with z less than 1.5%, and a minimum vaue of c ekists when p is about 13.5 kN/m'. The variations of β with p and with frequency f are linear. Based on the geo-acoustic model and the ray theory, simulations of sound refiection from the fluid mud layers have been made, and some significallt results obtained, from which the bulk density profiles of fluld mud layers can be derived inversely. 展开更多
关键词 Geoacoustic model and acoustic reflection properties of fluid mud layer in Changjiang Estuary and Hangzhou Bay
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部