In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of...In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives.展开更多
Aerosol deposition(AD)method is a kind of additive manufacturing technology for fabricating dense films such as metals and ceramics at room temperature.It resolves the challenge of integrating ceramic films onto tempe...Aerosol deposition(AD)method is a kind of additive manufacturing technology for fabricating dense films such as metals and ceramics at room temperature.It resolves the challenge of integrating ceramic films onto temperaturesensitive substrates,including metals,glasses,and polymers.It should be emphasized that the AD is a spray coating technology that uses powder without thermal assistance to generate films with high density.Compared to the traditional sputter-based approach,the AD shows several advantages in efficiency,convenience,better interfacial bonding and so on.Therefore,it opens some possibilities to the field of batteries,especially all-solidstate batteries(ASSBs)and draws much attention not only for research but also for large scale applications.The purpose of this work is to provide a critical review on the science and technology of AD as well as its applications in the field of batteries.The process,mechanism and effective parameters of AD,and recent developments in AD applications in the field of batteries will be systematically reviewed so that a trend for AD will be finally provided.展开更多
Air leakage in underground coal mines presents a serious hazard for coal production and the safety of miners.Coating technology is commonly used as an efficient means for preventing air leakage.To address existing pro...Air leakage in underground coal mines presents a serious hazard for coal production and the safety of miners.Coating technology is commonly used as an efficient means for preventing air leakage.To address existing problems with high dust concentrations in large operations involving complex processes and the high cost of traditional coating technology,a novel coating technology that ensures intrinsic safety by utilizing water pressure and wind pressure was developed.This new coating technology was designed to suction and spray,and the technical parameters of its spray performance was also studied.The experimental tests and evaluation indicated the optimum working range is 0.3–0.7 MPa of wind pressure,1.2–10.2 L/min of water quantity,and 1.0–3.5 m of spraying distance.Moreover,this novel coating technology was tested in the Dashuitou Coal Mine in Gansu Province of China.Compared with conventional counterparts,the proposed new technology is safe,efficient,and convenient to operate.During spraying,dust concentrations were kept at less than 10 mg/m3,and the average rebound ratio resilient rate of solid materials was below 13%.After spraying,the average leakage every 100 m was 4 m3/min,and the oxygen volume fraction in the adjacent goaf was approximately 4%,demonstrating excellent air leakage prevention.展开更多
The importance of foundry coating in improving the surface quality of castings cannot be over emphasized. The application of mould and core washes creates a high thermal integrity barrier between the metal and the mou...The importance of foundry coating in improving the surface quality of castings cannot be over emphasized. The application of mould and core washes creates a high thermal integrity barrier between the metal and the mould resulting in the reduction of the thermal shock experienced by the sand system. These thermal shock leads to series of surface defects such as veining/finning, metal penetration, burn-on/in, scab, rat tail, erosion etc. The use of coatings reduces the tendency of occurrence of these defects. However, the understanding of the coating, its components, characteristics and mechanism of action is important. In this review, a detailed description of these topics and examples are provided where necessary. A potential area of research in foundry coating development, using sol-gel process is suggested. The application of sol-gel technology in the development of foundry coatings is a novel approach.展开更多
Film coating is an important unit operation to produce solid dosage forms,thereby,the monitoring of this process is helpful to find problems in time and improve the quality of coated products.Traditional methods adopt...Film coating is an important unit operation to produce solid dosage forms,thereby,the monitoring of this process is helpful to find problems in time and improve the quality of coated products.Traditional methods adopted to monitor this process include measurement of coating weight gain,performance of disintegration and dissolution test,etc.However,not only do these methods cause destruction to the samples,but also consume time and energy.There have recently emerged the applications of process analytical technologies(PAT)on film coating,especially some novel spectroscopic and imaging technologies,which have the potential to real-time track the progress in film coating and optimize production efficiency.This article gives an overview on the application of such technologies for film coating,with the goal to provide a reference for the further researches.展开更多
Coated capillary columns were prepared by sol-gel technology and used in the separation of basic proteins with capillary zone electrophoresis. The results indicated that a significant decrease in protein adsorption wa...Coated capillary columns were prepared by sol-gel technology and used in the separation of basic proteins with capillary zone electrophoresis. The results indicated that a significant decrease in protein adsorption was obtained and EOF was also diminished to zero in the pH range of 3-10.展开更多
The development trend of coated and plated technology for continuous strip steels,which include hot dip plating,electroplating,organic coating and vacuum plating technology,were summarized.
Crack monitoring plays a great role in modern structural health monitoring, however, most of the conventional crack inspections have disadvantages in terms of the accuracy, expense, reliability, durability and level o...Crack monitoring plays a great role in modern structural health monitoring, however, most of the conventional crack inspections have disadvantages in terms of the accuracy, expense, reliability, durability and level of instrumentation required. Thus, development of a simple and reliable crack inspection technique that allows continuous monitoring has been desired. In this paper, electrical potential technique and modern surface technology are employed together to develop a new structural surface crack monitoring method. A special crack monitoring coating sensor based on electrical potential technique was deposited on the hot spot of the structure by modern surface technology. The sensor consists of three layers: the isolated layer, the sensing layer and the protective layer. The isolated layer is prepared by anodic oxidation technology, the sensing layer is made of ion plated copper, and the protective layer is made of silicone. The thickness of each layer is at micrometer magnitude. The electrical conductivity of the sensor is very stable, and the fatigue performance of the specimen with or without coating sensor is nearly unchanged. The crack monitoring experiment result shows that there are two sudden rises of the coating sensor electrical potential values, corresponding to different stages of the crack initiation and propagation. Since the width of the surface coating sensor is only 0.5 mm, this crack monitoring sensor can detect the propagation of cracks less than 0.5 mm long. The method proposed takes the simplicity of electrical potential technique and can monitor surface crack of nearly all kinds of structures precisely. The results of this paper may form the basis of a new crack monitoring system.展开更多
(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corros...(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corrosion resistance,which is clearly superior to that of some typical bulk HEA and common engineering alloys.In order to obtain appropriate laser cladding preparation process parameters,the effects of laser energy density on the microstructure,microhardness,and corrosion resistance of(CoCrFeNi)95Nb5 HEA coating were closely studied.Results showed that as the laser energy density increases,precipitation of the Laves phase in(CoCrFeNi)95Nb5 HEA coating gradually decreases,and diffusion of the Fe element in the substrate intensifies,affecting the integrity of the(CoCrFeNi)95Nb5 HEA.This decreases the microhardness of(CoCrFeNi)95Nb5 HEA coatings.Moreover,the relative content of Cr2O3,Cr(OH)3,and Nb2O5 in the surface passive film of the coating decreases with increasing energy density,causing corrosion resistance to decrease.This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology,which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings.展开更多
A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control ...A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al2O3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended.展开更多
The MnZn ferrite coating formed on the surface of iron-based soft magnetic powders via facile and modified sol–gel process has been fabricated to obtain better magnetic performance due to its higher permeability comp...The MnZn ferrite coating formed on the surface of iron-based soft magnetic powders via facile and modified sol–gel process has been fabricated to obtain better magnetic performance due to its higher permeability compared with traditional nonmagnetic insulation coatings. The influence of the MnZn ferrite contents on the magnetic performance of the soft magnetic composites(SMCs) has been studied. As the MnZn insulation content increases, the core loss first experiences a decreasing trend that is followed by progressive increase, while the permeability follows an increasing trend and subsequently degrades. The optimized magnetic performance is achieved with 2.0 wt% MnZn ferrite, which results from the decrement of inter-particle eddy current losses based on loss separation. A uniform and compact coating layer composed of MnZn ferrite and oxides with an average thickness of 0.38 ± 0.08 μm is obtained by utilizing ion beam technology, and the interface between the powders and the coating shows satisfied adhesiveness compared with the sample directly prepared by mechanical mixing. The evolution of the coating layers during the calcination process has been presented based on careful analysis of the composition and microstructure.展开更多
The metallic substrate-catalysts with different subsistence states of CeO2-ZrO2 mixed oxides were prepared and the catalytic properties were investigated. The studies on CeO2-ZrO2-V2O5-CuO mixed oxides which were prep...The metallic substrate-catalysts with different subsistence states of CeO2-ZrO2 mixed oxides were prepared and the catalytic properties were investigated. The studies on CeO2-ZrO2-V2O5-CuO mixed oxides which were prepared by coprecipitation, show that the doping of V^5+ and Cu^2+ in CeO2-ZrO2 mixed oxides can enhance the catalytic activity and thermal stability of coating materials. Moreover, different additives were doped in slurries of γ-Al2O3 to investigate the influence of additives on oxidation activity of catalysts. The mixture of ceria-zirconia, alkali metals and other rare earths acting as additives exhibits promotion effect on oxidation activity by optimizing the distribution of oxygen on the surface and in the bulk of ceria species. This mentioned mixture was mixed with γ-Al2O3 and a newly proposed active component to prepare a new catalyst. Afterward, the influence of thermal treatment on the new catalyst were investigated by calcinations at 500, 650, 750, 800, 850 and 900 ℃ for 2 h. The light-off curves of CO and HC show that after being treated at 650 - 750 ℃, catalysts present the best activity. XRD patterns show that ceria and zirconia species in the newly proposed active component form a phase of extra CeO2-ZrO2 mixed oxides on the surface of catalysts after the thermal treatment at 750 ℃, which has practical value for improving the preparation process and promoting the catalytic properties. Moreover, XPS resuits imply the existence of Ce1-xPdxO2-σ and Ce1- xPtxO2-σ on the surface of these treated samples, which may show influence on the catalytic activities.展开更多
This paper is a brief and selective review on hydrothermal synthesis of advanced materials. Some general comments about the hydrothermal synthesis of materials are presented. In particular, the surface modification an...This paper is a brief and selective review on hydrothermal synthesis of advanced materials. Some general comments about the hydrothermal synthesis of materials are presented. In particular, the surface modification and hydrothermal synthesis of functional powders (e.g. the hydrothermal coating of aluminum borate whiskers with chromium oxide, hydrothermal synthesis of Ni-Zn ferrite and magnesium hydroxide ) are introduced and their importance are explained.展开更多
Vapor deposited coatings onto strip steel are a promising alternative as functional layers for corrosion protection or high abrasion resistance.Conventional coating systems have some limits regarding environmental com...Vapor deposited coatings onto strip steel are a promising alternative as functional layers for corrosion protection or high abrasion resistance.Conventional coating systems have some limits regarding environmental compatibility,the range of coating materials and application properties. Physical vapor deposition(PVD) is an environment-friendly technology and enables nearly unlimited material and process variety.Electron beam high-rate evaporation with deposition rates up to some micrometers per second is the most productive PVD technology for low cost coating.The combination of evaporation with powerful plasma is an efficient way to improve the layer properties.The developed plasma sources can be used for special plasma enhanced chemical vapor deposition(PECVD) processes too. The paper gives an overview about the latest developments in these technologies.Furthermore,the paper explains some examples of new layer stacks onto steel strips.While enhanced corrosion protection can be obtained by magnesium,aluminium or copper containing coatings other functional surface properties come more and more in the focus of interest.For instance,decorative gold colored layers,transparent scratch resistant layers,hard coatings and photo catalytic layers were deposited on running steel strips.Functional layers and layer systems for energy saving and sun energy absorption by solar thermal effects and photo voltaics are under development.The coatings are prepared under the conditions of very high deposition rates using our in-line vacuum coater for metallic strips and sheets with the name MAXI.The influence of the process and plasma parameters on the layer properties were investigated and will be demonstrated for some applications.展开更多
The development of plasma spraying technology since the ITSC' 95 conference is briefly summarized. Emphasis is placed on the new achievements of plasma spraying materials, processing, coating properties , faciliti...The development of plasma spraying technology since the ITSC' 95 conference is briefly summarized. Emphasis is placed on the new achievements of plasma spraying materials, processing, coating properties , facilities and application. The state of the plasma spraying technology in China is also introduced in the paper.展开更多
Firstly, the water-quality characteristics of intestinal lavage wastewater and enzymolysis wastewater from the typical heparin sodium pro- ductive process were analyzed, and then the segregation treatment was applied ...Firstly, the water-quality characteristics of intestinal lavage wastewater and enzymolysis wastewater from the typical heparin sodium pro- ductive process were analyzed, and then the segregation treatment was applied in the treatment of enteric coating and heparin sodium manufacturing wastewater. Finally, the treatment of the two kinds of wastewater by different methods were discussed. The results showed that, COD of enzymolysis wastewater treated by centrifugation-coagulation-Fenton reagent oxidation-adsorption process was lower than 100 mg/L, while intestinal lavage wastewater treated by coagulation-ASBR-SBR process could meet the first standard of Comprehensive Discharge Standard of Sewage (GB8978-1996) after one month of continuous operation.展开更多
The paper presents results of the research carried out by the authors in different fields of plasma surface technologies applications. Three groups of different surface engineering technologies are shown in the paper....The paper presents results of the research carried out by the authors in different fields of plasma surface technologies applications. Three groups of different surface engineering technologies are shown in the paper. The first one concerns the possibility of using the duplex treatment technology for creation of biocompatible diamond-like a-C:H films. The paper presents research results concerning influence of the process parameters of the a-C:H coatings creation by means of the RF PACVD method in the pure methane atmosphere on their phase structure and mechanical properties. In the second case authors present the concept of a new special multilayer thermal barrier coatings with the PAPVD diffusion barrier layers based on aluminium oxide. As the last one the special application of plasma techniques for creation of composite materials characterized by the muffling of mechanical vibration was presented.展开更多
Two different technologies,electro-brush plating and arc spraying,were employed to deposit copper film and brass coating on the surface of nonmetal artworks,respectively. The principles of the oxidizing corrosion and ...Two different technologies,electro-brush plating and arc spraying,were employed to deposit copper film and brass coating on the surface of nonmetal artworks,respectively. The principles of the oxidizing corrosion and coloring were researched. The nonmetal artworks attain vivid and ancient bronze effect by the surface deposition and surface coloring processing. By using this technology,the problems of difficulty-to-plating copper and difficulty-to-archaizing for the large outdoor sculptures and other artworks can be solved,and it has prospective application due to low investment.展开更多
基金National Natural Science Foundation of China(Grant No.22005275)to provide fund for conducting experiments.
文摘In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives.
基金supported by National University of Singapore (Chongqing) Research InstituteNational University of Singapore+2 种基金Chongqing Postdoctoral Research Special FundingOverseas Postdoctoral Research Start-up FundingNatural Science Foundation of Chongqing, China (cstc2021jcyj-msxmX0086)
文摘Aerosol deposition(AD)method is a kind of additive manufacturing technology for fabricating dense films such as metals and ceramics at room temperature.It resolves the challenge of integrating ceramic films onto temperaturesensitive substrates,including metals,glasses,and polymers.It should be emphasized that the AD is a spray coating technology that uses powder without thermal assistance to generate films with high density.Compared to the traditional sputter-based approach,the AD shows several advantages in efficiency,convenience,better interfacial bonding and so on.Therefore,it opens some possibilities to the field of batteries,especially all-solidstate batteries(ASSBs)and draws much attention not only for research but also for large scale applications.The purpose of this work is to provide a critical review on the science and technology of AD as well as its applications in the field of batteries.The process,mechanism and effective parameters of AD,and recent developments in AD applications in the field of batteries will be systematically reviewed so that a trend for AD will be finally provided.
基金supported by the National Natural Science Foundation of China(Grant No.51704283)Natural Science Foundation of Jiangsu Province(BK20170277)+1 种基金Program for Changjiang Scholars and Innovative Research Team in University(IRT_17R103)the Fundamental Research Funds for the Central Universities(2014XT02)。
文摘Air leakage in underground coal mines presents a serious hazard for coal production and the safety of miners.Coating technology is commonly used as an efficient means for preventing air leakage.To address existing problems with high dust concentrations in large operations involving complex processes and the high cost of traditional coating technology,a novel coating technology that ensures intrinsic safety by utilizing water pressure and wind pressure was developed.This new coating technology was designed to suction and spray,and the technical parameters of its spray performance was also studied.The experimental tests and evaluation indicated the optimum working range is 0.3–0.7 MPa of wind pressure,1.2–10.2 L/min of water quantity,and 1.0–3.5 m of spraying distance.Moreover,this novel coating technology was tested in the Dashuitou Coal Mine in Gansu Province of China.Compared with conventional counterparts,the proposed new technology is safe,efficient,and convenient to operate.During spraying,dust concentrations were kept at less than 10 mg/m3,and the average rebound ratio resilient rate of solid materials was below 13%.After spraying,the average leakage every 100 m was 4 m3/min,and the oxygen volume fraction in the adjacent goaf was approximately 4%,demonstrating excellent air leakage prevention.
文摘The importance of foundry coating in improving the surface quality of castings cannot be over emphasized. The application of mould and core washes creates a high thermal integrity barrier between the metal and the mould resulting in the reduction of the thermal shock experienced by the sand system. These thermal shock leads to series of surface defects such as veining/finning, metal penetration, burn-on/in, scab, rat tail, erosion etc. The use of coatings reduces the tendency of occurrence of these defects. However, the understanding of the coating, its components, characteristics and mechanism of action is important. In this review, a detailed description of these topics and examples are provided where necessary. A potential area of research in foundry coating development, using sol-gel process is suggested. The application of sol-gel technology in the development of foundry coatings is a novel approach.
基金supported by National Natural Science Foundation of China(81202476)Medical Research Foundation of Guangdong Province(B2012079).
文摘Film coating is an important unit operation to produce solid dosage forms,thereby,the monitoring of this process is helpful to find problems in time and improve the quality of coated products.Traditional methods adopted to monitor this process include measurement of coating weight gain,performance of disintegration and dissolution test,etc.However,not only do these methods cause destruction to the samples,but also consume time and energy.There have recently emerged the applications of process analytical technologies(PAT)on film coating,especially some novel spectroscopic and imaging technologies,which have the potential to real-time track the progress in film coating and optimize production efficiency.This article gives an overview on the application of such technologies for film coating,with the goal to provide a reference for the further researches.
文摘Coated capillary columns were prepared by sol-gel technology and used in the separation of basic proteins with capillary zone electrophoresis. The results indicated that a significant decrease in protein adsorption was obtained and EOF was also diminished to zero in the pH range of 3-10.
文摘The development trend of coated and plated technology for continuous strip steels,which include hot dip plating,electroplating,organic coating and vacuum plating technology,were summarized.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA03Z103)Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China (Grant No. [2006]331)
文摘Crack monitoring plays a great role in modern structural health monitoring, however, most of the conventional crack inspections have disadvantages in terms of the accuracy, expense, reliability, durability and level of instrumentation required. Thus, development of a simple and reliable crack inspection technique that allows continuous monitoring has been desired. In this paper, electrical potential technique and modern surface technology are employed together to develop a new structural surface crack monitoring method. A special crack monitoring coating sensor based on electrical potential technique was deposited on the hot spot of the structure by modern surface technology. The sensor consists of three layers: the isolated layer, the sensing layer and the protective layer. The isolated layer is prepared by anodic oxidation technology, the sensing layer is made of ion plated copper, and the protective layer is made of silicone. The thickness of each layer is at micrometer magnitude. The electrical conductivity of the sensor is very stable, and the fatigue performance of the specimen with or without coating sensor is nearly unchanged. The crack monitoring experiment result shows that there are two sudden rises of the coating sensor electrical potential values, corresponding to different stages of the crack initiation and propagation. Since the width of the surface coating sensor is only 0.5 mm, this crack monitoring sensor can detect the propagation of cracks less than 0.5 mm long. The method proposed takes the simplicity of electrical potential technique and can monitor surface crack of nearly all kinds of structures precisely. The results of this paper may form the basis of a new crack monitoring system.
基金This work was financially supported by the National Key R&D Program of China(No.2018YFB0606104)the National Natural Science Foundation of China(No.51702332).
文摘(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corrosion resistance,which is clearly superior to that of some typical bulk HEA and common engineering alloys.In order to obtain appropriate laser cladding preparation process parameters,the effects of laser energy density on the microstructure,microhardness,and corrosion resistance of(CoCrFeNi)95Nb5 HEA coating were closely studied.Results showed that as the laser energy density increases,precipitation of the Laves phase in(CoCrFeNi)95Nb5 HEA coating gradually decreases,and diffusion of the Fe element in the substrate intensifies,affecting the integrity of the(CoCrFeNi)95Nb5 HEA.This decreases the microhardness of(CoCrFeNi)95Nb5 HEA coatings.Moreover,the relative content of Cr2O3,Cr(OH)3,and Nb2O5 in the surface passive film of the coating decreases with increasing energy density,causing corrosion resistance to decrease.This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology,which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings.
文摘A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al2O3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2018MEM020)
文摘The MnZn ferrite coating formed on the surface of iron-based soft magnetic powders via facile and modified sol–gel process has been fabricated to obtain better magnetic performance due to its higher permeability compared with traditional nonmagnetic insulation coatings. The influence of the MnZn ferrite contents on the magnetic performance of the soft magnetic composites(SMCs) has been studied. As the MnZn insulation content increases, the core loss first experiences a decreasing trend that is followed by progressive increase, while the permeability follows an increasing trend and subsequently degrades. The optimized magnetic performance is achieved with 2.0 wt% MnZn ferrite, which results from the decrement of inter-particle eddy current losses based on loss separation. A uniform and compact coating layer composed of MnZn ferrite and oxides with an average thickness of 0.38 ± 0.08 μm is obtained by utilizing ion beam technology, and the interface between the powders and the coating shows satisfied adhesiveness compared with the sample directly prepared by mechanical mixing. The evolution of the coating layers during the calcination process has been presented based on careful analysis of the composition and microstructure.
文摘The metallic substrate-catalysts with different subsistence states of CeO2-ZrO2 mixed oxides were prepared and the catalytic properties were investigated. The studies on CeO2-ZrO2-V2O5-CuO mixed oxides which were prepared by coprecipitation, show that the doping of V^5+ and Cu^2+ in CeO2-ZrO2 mixed oxides can enhance the catalytic activity and thermal stability of coating materials. Moreover, different additives were doped in slurries of γ-Al2O3 to investigate the influence of additives on oxidation activity of catalysts. The mixture of ceria-zirconia, alkali metals and other rare earths acting as additives exhibits promotion effect on oxidation activity by optimizing the distribution of oxygen on the surface and in the bulk of ceria species. This mentioned mixture was mixed with γ-Al2O3 and a newly proposed active component to prepare a new catalyst. Afterward, the influence of thermal treatment on the new catalyst were investigated by calcinations at 500, 650, 750, 800, 850 and 900 ℃ for 2 h. The light-off curves of CO and HC show that after being treated at 650 - 750 ℃, catalysts present the best activity. XRD patterns show that ceria and zirconia species in the newly proposed active component form a phase of extra CeO2-ZrO2 mixed oxides on the surface of catalysts after the thermal treatment at 750 ℃, which has practical value for improving the preparation process and promoting the catalytic properties. Moreover, XPS resuits imply the existence of Ce1-xPdxO2-σ and Ce1- xPtxO2-σ on the surface of these treated samples, which may show influence on the catalytic activities.
文摘This paper is a brief and selective review on hydrothermal synthesis of advanced materials. Some general comments about the hydrothermal synthesis of materials are presented. In particular, the surface modification and hydrothermal synthesis of functional powders (e.g. the hydrothermal coating of aluminum borate whiskers with chromium oxide, hydrothermal synthesis of Ni-Zn ferrite and magnesium hydroxide ) are introduced and their importance are explained.
文摘Vapor deposited coatings onto strip steel are a promising alternative as functional layers for corrosion protection or high abrasion resistance.Conventional coating systems have some limits regarding environmental compatibility,the range of coating materials and application properties. Physical vapor deposition(PVD) is an environment-friendly technology and enables nearly unlimited material and process variety.Electron beam high-rate evaporation with deposition rates up to some micrometers per second is the most productive PVD technology for low cost coating.The combination of evaporation with powerful plasma is an efficient way to improve the layer properties.The developed plasma sources can be used for special plasma enhanced chemical vapor deposition(PECVD) processes too. The paper gives an overview about the latest developments in these technologies.Furthermore,the paper explains some examples of new layer stacks onto steel strips.While enhanced corrosion protection can be obtained by magnesium,aluminium or copper containing coatings other functional surface properties come more and more in the focus of interest.For instance,decorative gold colored layers,transparent scratch resistant layers,hard coatings and photo catalytic layers were deposited on running steel strips.Functional layers and layer systems for energy saving and sun energy absorption by solar thermal effects and photo voltaics are under development.The coatings are prepared under the conditions of very high deposition rates using our in-line vacuum coater for metallic strips and sheets with the name MAXI.The influence of the process and plasma parameters on the layer properties were investigated and will be demonstrated for some applications.
文摘The development of plasma spraying technology since the ITSC' 95 conference is briefly summarized. Emphasis is placed on the new achievements of plasma spraying materials, processing, coating properties , facilities and application. The state of the plasma spraying technology in China is also introduced in the paper.
基金Supported by the Project of Practical Innovation Training Program of Undergraduates in Jiangsu Province in 2012(232)
文摘Firstly, the water-quality characteristics of intestinal lavage wastewater and enzymolysis wastewater from the typical heparin sodium pro- ductive process were analyzed, and then the segregation treatment was applied in the treatment of enteric coating and heparin sodium manufacturing wastewater. Finally, the treatment of the two kinds of wastewater by different methods were discussed. The results showed that, COD of enzymolysis wastewater treated by centrifugation-coagulation-Fenton reagent oxidation-adsorption process was lower than 100 mg/L, while intestinal lavage wastewater treated by coagulation-ASBR-SBR process could meet the first standard of Comprehensive Discharge Standard of Sewage (GB8978-1996) after one month of continuous operation.
文摘The paper presents results of the research carried out by the authors in different fields of plasma surface technologies applications. Three groups of different surface engineering technologies are shown in the paper. The first one concerns the possibility of using the duplex treatment technology for creation of biocompatible diamond-like a-C:H films. The paper presents research results concerning influence of the process parameters of the a-C:H coatings creation by means of the RF PACVD method in the pure methane atmosphere on their phase structure and mechanical properties. In the second case authors present the concept of a new special multilayer thermal barrier coatings with the PAPVD diffusion barrier layers based on aluminium oxide. As the last one the special application of plasma techniques for creation of composite materials characterized by the muffling of mechanical vibration was presented.
基金Project (50675072) supported by the National Natural Science Foundation of ChinaProject (2006F3084) supported by the Youth Innovation Found of Fujian Province, ChinaProject (06BS104) supported by the Science Research Found of Huaqiao University
文摘Two different technologies,electro-brush plating and arc spraying,were employed to deposit copper film and brass coating on the surface of nonmetal artworks,respectively. The principles of the oxidizing corrosion and coloring were researched. The nonmetal artworks attain vivid and ancient bronze effect by the surface deposition and surface coloring processing. By using this technology,the problems of difficulty-to-plating copper and difficulty-to-archaizing for the large outdoor sculptures and other artworks can be solved,and it has prospective application due to low investment.