The dynamic buckling of elasto-plastic cylindrical shells under axial fluid-solid impact is investigated theoretically. A simplified liquid- gas- structure model is given to approximately imitate the problem. The basi...The dynamic buckling of elasto-plastic cylindrical shells under axial fluid-solid impact is investigated theoretically. A simplified liquid- gas- structure model is given to approximately imitate the problem. The basic equation of the structure is derived from a minimum principle in dynamics of elasto-plastic continua at finite deformation, and the flow theory of plasticity is employed. The liquid is incompressible and the gas is compressed adiabatically. A number of numerical results are presented and the characteristics of the buckling behavior under fluid-solid impact are illustrated.展开更多
The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to sim...The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure.展开更多
A simple solution of the dynamic buckling of stiffened plates under fluid-solid impact loading is presented.Based on large deflection theory,a discretely stiffened plate model has been used.The tangential stresses of ...A simple solution of the dynamic buckling of stiffened plates under fluid-solid impact loading is presented.Based on large deflection theory,a discretely stiffened plate model has been used.The tangential stresses of stiffeners and in-plane displacement are neglected.Applying the (Hamilton's) principle,the motion equations of stiffened plates are obtained.The deflection of the plate is taken as Fourier series,and using Galerkin method,the discrete equations can be deduced,which can be solved easily by Runge-Kutta method.The dynamic buckling loads of the stiffened plates are obtained from Budiansky-Roth(B-R) curves.展开更多
This paper is devoted to the two-dimensional nonlinear modeling of the fluid-solid interaction (FSI) between fabric and air flow, which is based on the Automatic Incremental Dynamic Nonlinear Analysis (AIDNA)-FSI prog...This paper is devoted to the two-dimensional nonlinear modeling of the fluid-solid interaction (FSI) between fabric and air flow, which is based on the Automatic Incremental Dynamic Nonlinear Analysis (AIDNA)-FSI program in order to study the dynamic bending features of fabrics in a specific air flow filed. The computational fluid dynamics (CFD) model for flow and the finite element model (FEM) for fabric was set up to constitute an FSI model in which the geometric nonlinear behavior and the dynamic stress-strain variation of the relatively soft fabric material were taken into account. Several FSI cases with different time-dependent wind load and the model frequency analysis for fabric were carried out. The dynamic response of fabric and the distribution of fluid variables were investigated. The results of numerical simulation and experiments fit quite well. Hence, this work contributes to the research of modeling the dynamic bending behavior of fabrics in air field.展开更多
The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engin...The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.展开更多
Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at dis...Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.展开更多
The dynamic behaviors of rotating shells coupled with liquid areshown. The shell under con- sideration has arbitrary boundaryconditions and a complex shape. A modified boundary element methodand finite strip technique...The dynamic behaviors of rotating shells coupled with liquid areshown. The shell under con- sideration has arbitrary boundaryconditions and a complex shape. A modified boundary element methodand finite strip technique are used to improve the computingefficiency and to guarantee the continuity conditions on theliquid-shell interaction plane. The effects of various parameterssuch as shell's thickness and liquid depth are investigated. Dynamicsimulations are applied to several typical shell-liquid systems, andthe natu- ral frequencies, mode shapes and response of vibration arecalculated numerically.展开更多
The spatiotemporal distribution characteristics of the regression rate are crucial aspects of the research on Hybrid Rocket Motor(HRM).This study presents a pioneering effort in achiev-ing a comprehensive numerical si...The spatiotemporal distribution characteristics of the regression rate are crucial aspects of the research on Hybrid Rocket Motor(HRM).This study presents a pioneering effort in achiev-ing a comprehensive numerical simulation of fluid dynamics and heat transfer in both the fluid and solid regions throughout the entire operation of an HRM.To accomplish this,a dynamic grid tech-nique that incorporates fluid-solid coupling is utilized.To validate the precision of the numerical simulations,a firing test is conducted,with embedded thermocouple probes being used to measure the inner temperature of the fuel grain.The temperature variations in the solid fuel obtained from both experiment and simulations show good agreement.The maximum combustion temperature and average thrust obtained from the simulations are found to deviate from the experimental results by only 3.3%and 2.4%,respectively.Thus,it can be demonstrated that transient numerical simu-lations accurately capture the fluid-solid coupling characteristics and transient regression rate.The dynamic simulation results of inner flow field and solid region throughout the entire working stage reveal that the presence of vortices enhances the blending of combustion gases and improves the regression rate at both the front and rear ends of the fuel grain.In addition,oscillations of the regression rate obtained in the simulation can also be well corresponded with the corrugated surface observed in the experiment.Furthermore,the zero-dimension regression rate formula and the for-mula describing the axial location dependence of the regression rate are fitted from the simulation results,with the corresponding coefficients of determination(R°)of 0.9765 and 0.9298,respectively.This research serves as a reference for predicting the performance of HRM with gas oxygen and polyethylene,and presents a credible way for investigating the spatiotemporal distribution of the regression rate.展开更多
This paper concerns the dynamic plastic response of a circular plate resting on fluid subjected to a uniformly distributed rectangular load pulse with finite deformation. It is assumed that the fluid is incompressible...This paper concerns the dynamic plastic response of a circular plate resting on fluid subjected to a uniformly distributed rectangular load pulse with finite deformation. It is assumed that the fluid is incompressible and inviscous, and the plate is made of rigid-plastic material and simply supported along its edge. By using the method of the Hankel integral transformation, the nonuniform fluid resistance is derived as the plate and the fluid is coupled. Finally, an analytic solution for a circular plate under a medium load is obtained according to the equations of motion of the plate with finite deformation.展开更多
Reservoirs characterized by high temperature,high-pressure,medium high cementation strength,low porosity,and low permeability,in general,are not affected by sand production issues.Since 2009,however,it is known that c...Reservoirs characterized by high temperature,high-pressure,medium high cementation strength,low porosity,and low permeability,in general,are not affected by sand production issues.Since 2009,however,it is known that cases exists where sand is present and may represent a significant technical problem(e.g.,the the Dina II condensate gas field).In the present study,the main factors affecting sand production in this type of reservoir are considered(mechanical properties,stress fields,production system,completion method and gas flow pattern changes during the production process).On this basis,a new liquid-solid coupled porous elasto-plastic 3D sand production model is introduced and validated through comparison with effective sand production data.The related prediction errors are found to be within 15%,which represents the necessary prerequisite for the utilization of such a model for the elaboration of sand prevention measures.展开更多
In this work,a new methodology is presented to mainly solve the fluid–solid interaction(FSI)equation.This methodology combines the advantages of the Newmark precise integral method(NPIM)and the dual neural network(DN...In this work,a new methodology is presented to mainly solve the fluid–solid interaction(FSI)equation.This methodology combines the advantages of the Newmark precise integral method(NPIM)and the dual neural network(DNN)method.The NPIM is employed to modify the exponential matrix and loading vector based on the DNN integral method.This involves incorporating the basic assumption of the Newmark-βmethod into the dynamic equation and eliminating the acceleration term from the dynamic equilibrium equation.As a result,the equation is reduced to a first-order linear equation system.Subsequently,the PIM is applied to integrate the system step by step within the NPIM.The DNN method is adopted to solve the inhomogeneous term through fitting the integrand and the original function with a pair of neural networks,and the integral term is solved using the Newton–Leibniz formula.Numerical examples demonstrate that the proposed methodology significantly improves computing efficiency and provides sufficient precision compared to the DNN method.This is particularly evident when analyzing large-scale structures under blast loading conditions.展开更多
This paper studies interactions of pipe and fluid and deals with bifurcations of a cantilevered pipe conveying a steady fluid, clamped at one end and having a nozzle subjected to nonlinear constraints at the free end....This paper studies interactions of pipe and fluid and deals with bifurcations of a cantilevered pipe conveying a steady fluid, clamped at one end and having a nozzle subjected to nonlinear constraints at the free end. Either the nozzle parameter or the flow velocity is taken as a variable parameter. The discrete equations of the system are obtained by the Ritz-Galerkin method. The static stability is studied by the Routh criteria. The method of averaging is employed to investigate the stability of the periodic motions. A Runge-Kutta scheme is used to examine the analytical results and the chaotic motions. Three critical values are given. The first one makes the system lose the static stability by pitchfork bifurcation. The second one makes the system lose the dynamical stability by Hopf bifurcation. The third one makes the periodic motions of the system lose the stability by doubling-period bifurcation.展开更多
This paper shows the mechanism of instability and chaos in acantilevered pipe conveying steady fluid. The pipe underconsideration has added mass or a nozzle at the free end. TheGalerkin method is used to transform the...This paper shows the mechanism of instability and chaos in acantilevered pipe conveying steady fluid. The pipe underconsideration has added mass or a nozzle at the free end. TheGalerkin method is used to transform the original system into a setof ordinary differential equations and the standard methods ofanalysis of the discrete system are introduced to deal with theinstability. With either the nozzle parameter or the flow velocityincreasing, a route to chaos can be observed very clearly: the pipeundergoing buckling (pitchfork bifurcation), flutter (Hopfbifurcation), doubling periodic motion (pitchfork bifurcation) andchaotic motion occurring finally.展开更多
The nonlinear behavior of a cantilevered fluid conveying pipe subjected to principal parametric and internal resonances is investigated in this paper.The flow velocity is divided into constant and sinusoidal parts.The...The nonlinear behavior of a cantilevered fluid conveying pipe subjected to principal parametric and internal resonances is investigated in this paper.The flow velocity is divided into constant and sinusoidal parts.The velocity value of the constant part is so adjusted such that the system exhibits 3:1 internal resonances for the first two modes.The method of multiple scales is employed to obtain the response of the system and a set of four first-order nonlinear ordinary- differential equations for governing the amplitude of the response.The eigenvalues of the Jacobian matrix are used to assess the stability of the equilibrium solutions with varying parameters.The co- dimension 2 derived from the double-zero eigenvalues is analyzed in detail.The results show that the response amplitude may undergo saddle-node,pitchfork,Hopf,homoclinic loop and period- doubling bifurcations depending on the frequency and amplitude of the sinusoidal flow.When the frequency of the sinusoidal flow equals exactly half of the first-mode frequency,the system has a route to chaos by period-doubling bifurcation and then returns to a periodic motion as the amplitude of the sinusoidal flow increases.展开更多
Based on the hydro-geological conditions of 1028 mining face in Suntuan Coal Mine, mining seepage strain mechanism of seam floor was simulated by a nonlinear coupling method, which applied fluid-solid coupling analysi...Based on the hydro-geological conditions of 1028 mining face in Suntuan Coal Mine, mining seepage strain mechanism of seam floor was simulated by a nonlinear coupling method, which applied fluid-solid coupling analysis module of FLAC^3D. The results indicate that the permeability coefficient of adjoining rock changes a lot due to mining. The maximum value reaches 1 379.9 times to the original value, where it is at immediate roof of the mined-out area. According to the analysis on the seepage field, mining does not destroy water resistance of the floor aquiclude. The mining fissure does not conduct lime-stone aquifer, and it is less likely to form damage. The plastic zone does not exactly correspond to the seepage area, and the scope of the altered seepage area is much larger than the plastic zone.展开更多
With the development of vehicle gearbox to high-power-density and high-speed, how to predict and optimize the dynamic characteristics of vehicle gearbox becomes increasingly prominent. Aiming at the vehicle gearbox, t...With the development of vehicle gearbox to high-power-density and high-speed, how to predict and optimize the dynamic characteristics of vehicle gearbox becomes increasingly prominent. Aiming at the vehicle gearbox, this paper comprehensively and deeply studies the dynamic characteristics under the multi-boundary conditions. The generation mechanism of the multi-source excitations triggering the gearbox vibration is analyzed firstly. The vibration transfer path of the gearbox is explored. Secondly, the engine excitation, the gear meshing excitation and the bearing support load are numerically calculated. According to the finite element method,a fluid-solid coupling finite element model of the gearbox body is established to predict the gearbox dynamic responses based on the Galerkin method and the Hamiltonian variational principle. Finally, the effects of the excitation condition, oil height and reinforcement forms on the vibration responses of the gearbox body are thoroughly studied by simulation. The analysis indicates that it not only helps to modify and improve the method of forecasting the gearbox dynamic response, and also provides the theoretical and technical guidance for the gearbox design and optimization.展开更多
The utilization of hydrogen is gaining increasing attention due to its high heating value and environmentally friendly combustion product.The supercritical water circulating fluidized bed reactor is a promising and po...The utilization of hydrogen is gaining increasing attention due to its high heating value and environmentally friendly combustion product.The supercritical water circulating fluidized bed reactor is a promising and potentially clean technology that can generate hydrogen from coal gasification.Cyclone is a vital part of the reactor which can separate incomplete decomposition of pulverized coal particles from mixed working fluid.This paper aims to gain in-depth understanding of the cyclone separation mechanisms under supercritical fluid by computational fluid dynamics(CFD).Although the amount of supercritical carbon dioxide in mixed working fluid is minor,it obviously influences the flow fields and separation efficiency of a cyclone.The simulation results suggest that both the decreasing content of supercritical carbon dioxide and adding the extra dipleg cause the promoting performance of cyclones.Research findings could refine the design of supercritical fluid-solid cyclones.展开更多
文摘The dynamic buckling of elasto-plastic cylindrical shells under axial fluid-solid impact is investigated theoretically. A simplified liquid- gas- structure model is given to approximately imitate the problem. The basic equation of the structure is derived from a minimum principle in dynamics of elasto-plastic continua at finite deformation, and the flow theory of plasticity is employed. The liquid is incompressible and the gas is compressed adiabatically. A number of numerical results are presented and the characteristics of the buckling behavior under fluid-solid impact are illustrated.
基金National Natural Science Foundation of People’s Republic of China under Grant Nos.51178011 and 51778386the Key Fundamental Study Development Project of People’s Republic of China under Grant No.2011CB013602。
文摘The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure.
文摘A simple solution of the dynamic buckling of stiffened plates under fluid-solid impact loading is presented.Based on large deflection theory,a discretely stiffened plate model has been used.The tangential stresses of stiffeners and in-plane displacement are neglected.Applying the (Hamilton's) principle,the motion equations of stiffened plates are obtained.The deflection of the plate is taken as Fourier series,and using Galerkin method,the discrete equations can be deduced,which can be solved easily by Runge-Kutta method.The dynamic buckling loads of the stiffened plates are obtained from Budiansky-Roth(B-R) curves.
基金National Natural Science Foundations of China(No.50803010,No.60904056)
文摘This paper is devoted to the two-dimensional nonlinear modeling of the fluid-solid interaction (FSI) between fabric and air flow, which is based on the Automatic Incremental Dynamic Nonlinear Analysis (AIDNA)-FSI program in order to study the dynamic bending features of fabrics in a specific air flow filed. The computational fluid dynamics (CFD) model for flow and the finite element model (FEM) for fabric was set up to constitute an FSI model in which the geometric nonlinear behavior and the dynamic stress-strain variation of the relatively soft fabric material were taken into account. Several FSI cases with different time-dependent wind load and the model frequency analysis for fabric were carried out. The dynamic response of fabric and the distribution of fluid variables were investigated. The results of numerical simulation and experiments fit quite well. Hence, this work contributes to the research of modeling the dynamic bending behavior of fabrics in air field.
基金Supported by the National Natural Science Foundation under Grant No.10272034the Doctoral Education Foundation under Grant No.20060217020
文摘The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.
基金the National Key Basic Research Program of China(No.2012CB214904)the National Natural Science Foundation of China for Innovative Research Group(No.51221462)+2 种基金the National Natural Science Foundation of China(Nos.51304196,51134022,and 51174203)the Natural Science Foundation of Jiangsu Province of China(No. BK2012136)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120095130001)
文摘Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.
基金the National Natural Science Foundation of China(No.19702004)
文摘The dynamic behaviors of rotating shells coupled with liquid areshown. The shell under con- sideration has arbitrary boundaryconditions and a complex shape. A modified boundary element methodand finite strip technique are used to improve the computingefficiency and to guarantee the continuity conditions on theliquid-shell interaction plane. The effects of various parameterssuch as shell's thickness and liquid depth are investigated. Dynamicsimulations are applied to several typical shell-liquid systems, andthe natu- ral frequencies, mode shapes and response of vibration arecalculated numerically.
基金supported by the National Natural Science Foundation of China (No.U20B2034).
文摘The spatiotemporal distribution characteristics of the regression rate are crucial aspects of the research on Hybrid Rocket Motor(HRM).This study presents a pioneering effort in achiev-ing a comprehensive numerical simulation of fluid dynamics and heat transfer in both the fluid and solid regions throughout the entire operation of an HRM.To accomplish this,a dynamic grid tech-nique that incorporates fluid-solid coupling is utilized.To validate the precision of the numerical simulations,a firing test is conducted,with embedded thermocouple probes being used to measure the inner temperature of the fuel grain.The temperature variations in the solid fuel obtained from both experiment and simulations show good agreement.The maximum combustion temperature and average thrust obtained from the simulations are found to deviate from the experimental results by only 3.3%and 2.4%,respectively.Thus,it can be demonstrated that transient numerical simu-lations accurately capture the fluid-solid coupling characteristics and transient regression rate.The dynamic simulation results of inner flow field and solid region throughout the entire working stage reveal that the presence of vortices enhances the blending of combustion gases and improves the regression rate at both the front and rear ends of the fuel grain.In addition,oscillations of the regression rate obtained in the simulation can also be well corresponded with the corrugated surface observed in the experiment.Furthermore,the zero-dimension regression rate formula and the for-mula describing the axial location dependence of the regression rate are fitted from the simulation results,with the corresponding coefficients of determination(R°)of 0.9765 and 0.9298,respectively.This research serves as a reference for predicting the performance of HRM with gas oxygen and polyethylene,and presents a credible way for investigating the spatiotemporal distribution of the regression rate.
文摘This paper concerns the dynamic plastic response of a circular plate resting on fluid subjected to a uniformly distributed rectangular load pulse with finite deformation. It is assumed that the fluid is incompressible and inviscous, and the plate is made of rigid-plastic material and simply supported along its edge. By using the method of the Hankel integral transformation, the nonuniform fluid resistance is derived as the plate and the fluid is coupled. Finally, an analytic solution for a circular plate under a medium load is obtained according to the equations of motion of the plate with finite deformation.
基金This study has been supported by the Major Science and Technology Project“Comprehensive Research of Exploration Matching and Application of New Technology”(2016ZX5051-3)of CNPC.
文摘Reservoirs characterized by high temperature,high-pressure,medium high cementation strength,low porosity,and low permeability,in general,are not affected by sand production issues.Since 2009,however,it is known that cases exists where sand is present and may represent a significant technical problem(e.g.,the the Dina II condensate gas field).In the present study,the main factors affecting sand production in this type of reservoir are considered(mechanical properties,stress fields,production system,completion method and gas flow pattern changes during the production process).On this basis,a new liquid-solid coupled porous elasto-plastic 3D sand production model is introduced and validated through comparison with effective sand production data.The related prediction errors are found to be within 15%,which represents the necessary prerequisite for the utilization of such a model for the elaboration of sand prevention measures.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072288,U2241274,and 12272319).
文摘In this work,a new methodology is presented to mainly solve the fluid–solid interaction(FSI)equation.This methodology combines the advantages of the Newmark precise integral method(NPIM)and the dual neural network(DNN)method.The NPIM is employed to modify the exponential matrix and loading vector based on the DNN integral method.This involves incorporating the basic assumption of the Newmark-βmethod into the dynamic equation and eliminating the acceleration term from the dynamic equilibrium equation.As a result,the equation is reduced to a first-order linear equation system.Subsequently,the PIM is applied to integrate the system step by step within the NPIM.The DNN method is adopted to solve the inhomogeneous term through fitting the integrand and the original function with a pair of neural networks,and the integral term is solved using the Newton–Leibniz formula.Numerical examples demonstrate that the proposed methodology significantly improves computing efficiency and provides sufficient precision compared to the DNN method.This is particularly evident when analyzing large-scale structures under blast loading conditions.
基金The project supported by the Science Foundation of Tongji UniversityNational Key Projects of China under Grant No.PD9521907
文摘This paper studies interactions of pipe and fluid and deals with bifurcations of a cantilevered pipe conveying a steady fluid, clamped at one end and having a nozzle subjected to nonlinear constraints at the free end. Either the nozzle parameter or the flow velocity is taken as a variable parameter. The discrete equations of the system are obtained by the Ritz-Galerkin method. The static stability is studied by the Routh criteria. The method of averaging is employed to investigate the stability of the periodic motions. A Runge-Kutta scheme is used to examine the analytical results and the chaotic motions. Three critical values are given. The first one makes the system lose the static stability by pitchfork bifurcation. The second one makes the system lose the dynamical stability by Hopf bifurcation. The third one makes the periodic motions of the system lose the stability by doubling-period bifurcation.
基金the National Key Projects of China under grant No.PD9521907Science Foundation of Tongji University under grant No.1300104010
文摘This paper shows the mechanism of instability and chaos in acantilevered pipe conveying steady fluid. The pipe underconsideration has added mass or a nozzle at the free end. TheGalerkin method is used to transform the original system into a setof ordinary differential equations and the standard methods ofanalysis of the discrete system are introduced to deal with theinstability. With either the nozzle parameter or the flow velocityincreasing, a route to chaos can be observed very clearly: the pipeundergoing buckling (pitchfork bifurcation), flutter (Hopfbifurcation), doubling periodic motion (pitchfork bifurcation) andchaotic motion occurring finally.
基金Project supported by the National Natural Science Foundation of China(No.10072039)RGC in City University of Hong Kong(No.7001206 and No.7001338).
文摘The nonlinear behavior of a cantilevered fluid conveying pipe subjected to principal parametric and internal resonances is investigated in this paper.The flow velocity is divided into constant and sinusoidal parts.The velocity value of the constant part is so adjusted such that the system exhibits 3:1 internal resonances for the first two modes.The method of multiple scales is employed to obtain the response of the system and a set of four first-order nonlinear ordinary- differential equations for governing the amplitude of the response.The eigenvalues of the Jacobian matrix are used to assess the stability of the equilibrium solutions with varying parameters.The co- dimension 2 derived from the double-zero eigenvalues is analyzed in detail.The results show that the response amplitude may undergo saddle-node,pitchfork,Hopf,homoclinic loop and period- doubling bifurcations depending on the frequency and amplitude of the sinusoidal flow.When the frequency of the sinusoidal flow equals exactly half of the first-mode frequency,the system has a route to chaos by period-doubling bifurcation and then returns to a periodic motion as the amplitude of the sinusoidal flow increases.
文摘Based on the hydro-geological conditions of 1028 mining face in Suntuan Coal Mine, mining seepage strain mechanism of seam floor was simulated by a nonlinear coupling method, which applied fluid-solid coupling analysis module of FLAC^3D. The results indicate that the permeability coefficient of adjoining rock changes a lot due to mining. The maximum value reaches 1 379.9 times to the original value, where it is at immediate roof of the mined-out area. According to the analysis on the seepage field, mining does not destroy water resistance of the floor aquiclude. The mining fissure does not conduct lime-stone aquifer, and it is less likely to form damage. The plastic zone does not exactly correspond to the seepage area, and the scope of the altered seepage area is much larger than the plastic zone.
基金the National Natural Science Foundation of China(Nos.51505402 and 51405410)the Education and Scientific Research Projects of Young and Middle-Aged Teachers in Fujian Province in 2014(No.JA14245)
文摘With the development of vehicle gearbox to high-power-density and high-speed, how to predict and optimize the dynamic characteristics of vehicle gearbox becomes increasingly prominent. Aiming at the vehicle gearbox, this paper comprehensively and deeply studies the dynamic characteristics under the multi-boundary conditions. The generation mechanism of the multi-source excitations triggering the gearbox vibration is analyzed firstly. The vibration transfer path of the gearbox is explored. Secondly, the engine excitation, the gear meshing excitation and the bearing support load are numerically calculated. According to the finite element method,a fluid-solid coupling finite element model of the gearbox body is established to predict the gearbox dynamic responses based on the Galerkin method and the Hamiltonian variational principle. Finally, the effects of the excitation condition, oil height and reinforcement forms on the vibration responses of the gearbox body are thoroughly studied by simulation. The analysis indicates that it not only helps to modify and improve the method of forecasting the gearbox dynamic response, and also provides the theoretical and technical guidance for the gearbox design and optimization.
基金The authors sincerely acknowledge the financial supports from the National Key R&D Program of China(No.2016YFB0600102-4)National Natural Science Foundation of China(No.12072071)to this research.
文摘The utilization of hydrogen is gaining increasing attention due to its high heating value and environmentally friendly combustion product.The supercritical water circulating fluidized bed reactor is a promising and potentially clean technology that can generate hydrogen from coal gasification.Cyclone is a vital part of the reactor which can separate incomplete decomposition of pulverized coal particles from mixed working fluid.This paper aims to gain in-depth understanding of the cyclone separation mechanisms under supercritical fluid by computational fluid dynamics(CFD).Although the amount of supercritical carbon dioxide in mixed working fluid is minor,it obviously influences the flow fields and separation efficiency of a cyclone.The simulation results suggest that both the decreasing content of supercritical carbon dioxide and adding the extra dipleg cause the promoting performance of cyclones.Research findings could refine the design of supercritical fluid-solid cyclones.