Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when th...The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.展开更多
Head waves are usually considered to be the refracted waves propagating along flat interfaces with an underlying higher velocity.However,the path that the rays travel along in media with irregular interfaces is not cl...Head waves are usually considered to be the refracted waves propagating along flat interfaces with an underlying higher velocity.However,the path that the rays travel along in media with irregular interfaces is not clear.Here we study the problem by simulation using a new approach of the spectral-element method with some overlapped elements(SEMO) that can accurately evaluate waves traveling along an irregular interface.Consequently,the head waves are separated from interface waves by a time window.Thus,their energy and arrival time changes can be analyzed independently.These analyses demonstrate that,contrary to the case for head waves propagating along a flat interface,there are two mechanisms for head waves traveling along an irregular interface:a refraction mechanism and transmission mechanism.That is,the head waves may be refracted waves propagating along the interface or transmitted waves induced by the waves propagating in the higher-velocity media.Such knowledge will be helpful in constructing a more accurate inversion method,such as head wave travel-time tomography,and in obtaining a more accurate model of subsurface structure which is very important for understanding the formation mechanism of some special areas,such as the Tibetan Plateau.展开更多
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently...Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.展开更多
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT...Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.展开更多
This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy...This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation,and where the strength of the initial phase field could be arbitrarily large,we prove that the solution of the Cauchy problem exists for all time,and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero.The proof is mainly based on a scaling argument and a basic energy method.展开更多
We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is com- posed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the...We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is com- posed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the Lamb wave can be obtained by the lateral lattice slipping or by the interface longitudinal gliding. Significantly, it is observed that the condition to generate the interface-guided modes of the Lamb wave is more demanding than that of the studied fluid-fluid system. The interface-guided modes are strongly affected not only by the relative movement of the two semi-infinite PCs but also by the thickness of the PC plate.展开更多
The dynamic behavior of an interface crack in magneto-electro-elastic composites under harmonic elastic anti-plane shear waves is investigated for the permeable electric boundary conditions. By using the Fourier trans...The dynamic behavior of an interface crack in magneto-electro-elastic composites under harmonic elastic anti-plane shear waves is investigated for the permeable electric boundary conditions. By using the Fourier transform, the problem can be solved with a pair of dual integral equations in which the unknown variable was the jump of the displacements across the crack surfaces. To solve the dual integral equations, the jump of the displacements across the crack surface was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effect of the length of the crack, the wave velocity and the circular frequency of the incident wave on the stress, the electric displacement and the magnetic flux intensity factors of the crack. From the results, it can be obtained that the singular stresses in piezoelectric/piezomagnetic materials carry the same forms as those in a general elastic material for anti-plane shear problem.展开更多
Based on the theory of elastic dynamics, the scattering of elasticwaves and dynamic stress concentration of fiber-reinforced compositewith interfaces are studied. Analytical expressions of elastic wavesin different me...Based on the theory of elastic dynamics, the scattering of elasticwaves and dynamic stress concentration of fiber-reinforced compositewith interfaces are studied. Analytical expressions of elastic wavesin different medium areas are presented and an analytic method ofsolving this problem is established. The mode coefficients aredetermined by means of the continuous conditions of displacement andstress on the boundary of the interfaces. The influence of materialproperties and structural size on the dynamic stress con- centrationfactors near the interfaces is analyzed.展开更多
An analytical method is developed for scattering of SH-waves and dynamic stressconcentration by an interacting interface crack and a circular cavity near bimaterial interface.Asuitable Green’s function is contructed,...An analytical method is developed for scattering of SH-waves and dynamic stressconcentration by an interacting interface crack and a circular cavity near bimaterial interface.Asuitable Green’s function is contructed,which is the fundamental solution of the displacement fieldfor an elastic half space with a circular cavity impacted by an out-plane harmonic line source loadingat the horizontal surface.First,the bimaterial media is divided into two parts along the horizontalinterface,one is an elastic half space with a circular cavity and the other is a complete half space.Then the problem is solved according to the procedure of combination and by the Green’s functionmethod.The horizontal surfaces of the two half spaces are loaded with undetermined anti-plane forcesin order to satisfy continuity conditions at the linking section,or with some forces to recover cracks bymeans of crack-division technique.A series of Fredholm integral equations of first kind for determiningthe unknown forces can be set up through continuity conditions as expressed in terms of the Green’sfunction.Moreover,some expressions are given in this paper,such as dynamic stress intensity factor(DSIF)at the tip of the interface crack and dynamic stress concentration factor(DSCF)around thecircular cavity edge.Numerical examples are provided to show the influences of the wave numbers,the geometrical location of the interface crack and the circular cavity,and parameter combinations ofdifferent media upon DSIF and DSCF.展开更多
Band gaps of elastic waves in 1-D phononic crystals with imperfect interfaces were studied. By using the transfer matrix method (TMM) and the Bloch wave theory in the periodic structure, the dispersion equation was ...Band gaps of elastic waves in 1-D phononic crystals with imperfect interfaces were studied. By using the transfer matrix method (TMM) and the Bloch wave theory in the periodic structure, the dispersion equation was derived for the periodically lami- nated binary system with imperfect interfaces (the traction vector jumps or the displacement vector jumps). The dispersion equation was solved numerically and wave band gaps were obtained in the Brillouin zone. Band gaps in the case of imperfect interfaces were compared with that in the case of perfect interfaces. The influence of imperfect interfaces on wave band gaps and some interesting phenomena were discussed.展开更多
Suggests a general method based on the general solutions of the governing equations for the linear elastic medium to solve unilateral interface problems in terms of functional equations and discusses the supersonic wa...Suggests a general method based on the general solutions of the governing equations for the linear elastic medium to solve unilateral interface problems in terms of functional equations and discusses the supersonic wave field in detail for the two half planes problems, gives its analytical solutions and concludes that the solving procedures shown here can completely be applied to subsonic and transonic wave fields and other analogous problems.展开更多
The propagation of shear-horizontal(SH)waves in the periodic layered nanocomposite is investigated by using both the nonlocal integral model and the nonlocal differential model with the interface effect.Based on the t...The propagation of shear-horizontal(SH)waves in the periodic layered nanocomposite is investigated by using both the nonlocal integral model and the nonlocal differential model with the interface effect.Based on the transfer matrix method and the Bloch theory,the band structures for SH waves with both vertical and oblique incidences to the structure are obtained.It is found that by choosing appropriate interface parameters,the dispersion curves predicted by the nonlocal differential model with the interface effect can be tuned to be the same as those based on the nonlocal integral model.Thus,by propagating the SH waves vertically and obliquely to the periodic layered nanostructure,we could invert,respectively,the interface mass density and the interface shear modulus,by matching the dispersion curves.Examples are further shown on how to determine the interface mass density and the interface shear modulus in theory.展开更多
Topological interface state(TIS)of elastic wave has attracted significant research interest due to its potential prospects in strengthening acoustic energy and enhancing the signal accuracy of damage identification an...Topological interface state(TIS)of elastic wave has attracted significant research interest due to its potential prospects in strengthening acoustic energy and enhancing the signal accuracy of damage identification and quantification.However,previous implementations on the interface modes of surface waves are limited to the non-adjustable frequency band and unalterable mode width.Here,we demonstrate the tunable TIS and topological resonance state(TRS)of Rayleigh wave by using a shape memory alloy(SMA)stubbed semi-infinite one-dimensional(1D)solid phononic crystals(PnCs),which simultaneously possesses the adjustable mode width.The mechanism of tunability stems from the phase transformation of the SMA between the martensite at low temperature and the austenite at high temperature.The tunable TIS of Rayleigh wave is realized by combining two bandgap-opened PnCs with different Zak phases.The TRS with adjustable mode width is achieved in the heterostructures by adding PnCs with Dirac point to the middle of two bandgap-opened PnCs with different Zak phases,which exhibits the extraordinary robustness in contrast to the ordinary Fabry–Perot resonance state.This research provides new possibilities for the highly adjustable Rayleigh wave manipulation and find promising applications such as tunable energy harvesters,wide-mode filters,and high-sensitivity Rayleigh wave detectors.展开更多
When wind appears over the free surface, water waves and turbulence are generated by an interfacial shear stress. In particular, turbulent diffusion promotes significantly mass and momentum transport beneath the inter...When wind appears over the free surface, water waves and turbulence are generated by an interfacial shear stress. In particular, turbulent diffusion promotes significantly mass and momentum transport beneath the interface between the water and air significantly in ocean and lakes, and thus it is very important for global environment problems to reveal such turbulence property and coherent structure. Simultaneous measurements of velocities and free-surface elevation allow us to conduct reasonably the phase analysis of the coherent structure in interfacial shear layer. Furthermore, multi-point measurements such as PIV are very powerful to detect the space-time structure of coherent motions. Therefore, in the present study, we developed a specially designed PIV system which can measure the velocity components and surface-elevation fluctuation simultaneously by using two sets of high-speed cameras to reveal the coherent structure in the interfacial shear layer.展开更多
The Green's function is used to solve the scattering far fieldsolution of SH-wave by a mov- able rigid cylindrical interfaceinclusion in a linear elastic body. First, a suitable Green'sfunction is devel- oped,...The Green's function is used to solve the scattering far fieldsolution of SH-wave by a mov- able rigid cylindrical interfaceinclusion in a linear elastic body. First, a suitable Green'sfunction is devel- oped, which is the fundamental displacementsolution of an elastic half space with a movable rigid half-cylin-drical inclusion impacted by out-of-plane harmonic line source loadedat any point of its horizontal surface.展开更多
Some of the main progress on the investigation of the mechanism of the wave formation in explosive welding at the Institute of Mechanics is summarized and otters'previous works are re- viewed.Our systematic experi...Some of the main progress on the investigation of the mechanism of the wave formation in explosive welding at the Institute of Mechanics is summarized and otters'previous works are re- viewed.Our systematic experiments and analysis do not substantiate the theory of wave formation based on Karman vortex-street analogy or Helmholtz instability.On the contrary,they show that materi- al strength insensitive to strain rate plays an important role.A simple hydro-plastic model is presented to explain the main features regarding the interracial wave formation and to estimate the magnitude of wave length.The result is in broad agreement with experiment.展开更多
The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress intensity factor at the crack-tip is computed. The scattering problem can be d...The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress intensity factor at the crack-tip is computed. The scattering problem can be decomposed into two problems: one is the reflection and refraction problem of general SH plane waves at perfect interface (with no crack); another is the scattering problem due to the existence of crack. For the first problem, the viscoelastic wave equation, displacement and stress continuity conditions across the interface are used to obtain the shear stress distribution at the interface. For the second problem, the integral transformation method is used to reduce the scattering problem into dual integral equations. Then, the dual integral equations are transformed into the Cauchy singular integral equation of first kind by introduction of the crack dislocation density function. Finally, the singular integral equation is solved by Kurtz's piecewise continuous function method. As a consequence, the crack opening displacement and dynamic stress intensity factor are obtained. At the end of the paper, a numerical example is given. The effects of incident angle, incident frequency and viscoelastic material parameters are analyzed. It is found that there is a frequency region for viscoelastic material within which the viscoelastic effects cannot be ignored.展开更多
The effects of interface shape on stress wave distribution and attenuation were investiga- ted using finite element method ( FEM ). The simulation results indicate that when the stress wave propagates from SiC ceram...The effects of interface shape on stress wave distribution and attenuation were investiga- ted using finite element method ( FEM ). The simulation results indicate that when the stress wave propagates from SiC ceramic to A1 alloy, the tensile stress decreases and the attenuation coefficient of the stress wave increases with increasing central angle of the concave interface between SiC and A1. But for the convex interface, the tensile stress increases and attenuation coefficient decreases with increasing central angle. As the stress wave propagates from A1 alloy to SiC ceramic, the atten- uation coefficient of stress wave decreases with increasing the central angle of the concave interface. For the convex interface, the attenuation coefficient increases with increasing central angle.展开更多
The interface wave propagating along an imperfect interface between two piezoelectric half spaces is derived firstly. The wave equations based on the interface modeled, called "spring model", are presented. The micr...The interface wave propagating along an imperfect interface between two piezoelectric half spaces is derived firstly. The wave equations based on the interface modeled, called "spring model", are presented. The micro-scale structures of the interface for connecting the spring constant with the interface micro-structures are examined. For some simple interface micro-structure, exact dynamic solution is available, and the spring constant is obtained by comparing solutions. For the complex micro structures, it remains as a challenge of micro-mechanics modeling to connect the "spring constant" and micro-structure.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
基金Project supported by the National Natural Science Foundation of China(No.12102131)the Natural Science Foundation of Henan Province of China(No.242300420248)the International Science and Technology Cooperation Project of Henan Province of China(No.242102521010)。
文摘The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.
基金supported by the National Natural Science Foundation of China (Grant Nos.40874027,90715020,and 90915012)the Institute of Geophysics of the China Earthquake Administration (Grant No.DQJB07B06)Special Public Welfare Industry (Grant Nos.20070804 and 200808008)
文摘Head waves are usually considered to be the refracted waves propagating along flat interfaces with an underlying higher velocity.However,the path that the rays travel along in media with irregular interfaces is not clear.Here we study the problem by simulation using a new approach of the spectral-element method with some overlapped elements(SEMO) that can accurately evaluate waves traveling along an irregular interface.Consequently,the head waves are separated from interface waves by a time window.Thus,their energy and arrival time changes can be analyzed independently.These analyses demonstrate that,contrary to the case for head waves propagating along a flat interface,there are two mechanisms for head waves traveling along an irregular interface:a refraction mechanism and transmission mechanism.That is,the head waves may be refracted waves propagating along the interface or transmitted waves induced by the waves propagating in the higher-velocity media.Such knowledge will be helpful in constructing a more accurate inversion method,such as head wave travel-time tomography,and in obtaining a more accurate model of subsurface structure which is very important for understanding the formation mechanism of some special areas,such as the Tibetan Plateau.
基金the National Nature Science Foundation of China(No.22305066).
文摘Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.
基金the National Natural Science Foundation(No.52073187)NSAF Foundation(No.U2230202)for their financial support of this project+3 种基金National Natural Science Foundation(No.51721091)Programme of Introducing Talents of Discipline to Universities(No.B13040)State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-2-03)support of China Scholarship Council
文摘Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.
基金supported by the National Natural Science Foundation of China(12361044)supported by the National Natural Science Foundation of China(12171024,11971217,11971020)supported by the Academic and Technical Leaders Training Plan of Jiangxi Province(20212BCJ23027)。
文摘This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation,and where the strength of the initial phase field could be arbitrarily large,we prove that the solution of the Cauchy problem exists for all time,and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero.The proof is mainly based on a scaling argument and a basic energy method.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374068 and 11374066)the Science&Technology Star of Zhujiang Foundation of Guangzhou,China(Grant No.2011J2200013)the Natural Science Foundation of Guangdong,China(Grant No.S2012020010885)
文摘We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is com- posed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the Lamb wave can be obtained by the lateral lattice slipping or by the interface longitudinal gliding. Significantly, it is observed that the condition to generate the interface-guided modes of the Lamb wave is more demanding than that of the studied fluid-fluid system. The interface-guided modes are strongly affected not only by the relative movement of the two semi-infinite PCs but also by the thickness of the PC plate.
文摘The dynamic behavior of an interface crack in magneto-electro-elastic composites under harmonic elastic anti-plane shear waves is investigated for the permeable electric boundary conditions. By using the Fourier transform, the problem can be solved with a pair of dual integral equations in which the unknown variable was the jump of the displacements across the crack surfaces. To solve the dual integral equations, the jump of the displacements across the crack surface was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effect of the length of the crack, the wave velocity and the circular frequency of the incident wave on the stress, the electric displacement and the magnetic flux intensity factors of the crack. From the results, it can be obtained that the singular stresses in piezoelectric/piezomagnetic materials carry the same forms as those in a general elastic material for anti-plane shear problem.
基金the National Natural Science Foundation of China(No.19972018)
文摘Based on the theory of elastic dynamics, the scattering of elasticwaves and dynamic stress concentration of fiber-reinforced compositewith interfaces are studied. Analytical expressions of elastic wavesin different medium areas are presented and an analytic method ofsolving this problem is established. The mode coefficients aredetermined by means of the continuous conditions of displacement andstress on the boundary of the interfaces. The influence of materialproperties and structural size on the dynamic stress con- centrationfactors near the interfaces is analyzed.
基金The project supported by the National Natural Science Foundation of China (59578003) and Doctoral Research Foundation of Chinese Ministry of Education (9521702)
文摘An analytical method is developed for scattering of SH-waves and dynamic stressconcentration by an interacting interface crack and a circular cavity near bimaterial interface.Asuitable Green’s function is contructed,which is the fundamental solution of the displacement fieldfor an elastic half space with a circular cavity impacted by an out-plane harmonic line source loadingat the horizontal surface.First,the bimaterial media is divided into two parts along the horizontalinterface,one is an elastic half space with a circular cavity and the other is a complete half space.Then the problem is solved according to the procedure of combination and by the Green’s functionmethod.The horizontal surfaces of the two half spaces are loaded with undetermined anti-plane forcesin order to satisfy continuity conditions at the linking section,or with some forces to recover cracks bymeans of crack-division technique.A series of Fredholm integral equations of first kind for determiningthe unknown forces can be set up through continuity conditions as expressed in terms of the Green’sfunction.Moreover,some expressions are given in this paper,such as dynamic stress intensity factor(DSIF)at the tip of the interface crack and dynamic stress concentration factor(DSCF)around thecircular cavity edge.Numerical examples are provided to show the influences of the wave numbers,the geometrical location of the interface crack and the circular cavity,and parameter combinations ofdifferent media upon DSIF and DSCF.
基金supported by the National Natural Science Foundation of China (No.10672019)
文摘Band gaps of elastic waves in 1-D phononic crystals with imperfect interfaces were studied. By using the transfer matrix method (TMM) and the Bloch wave theory in the periodic structure, the dispersion equation was derived for the periodically lami- nated binary system with imperfect interfaces (the traction vector jumps or the displacement vector jumps). The dispersion equation was solved numerically and wave band gaps were obtained in the Brillouin zone. Band gaps in the case of imperfect interfaces were compared with that in the case of perfect interfaces. The influence of imperfect interfaces on wave band gaps and some interesting phenomena were discussed.
文摘Suggests a general method based on the general solutions of the governing equations for the linear elastic medium to solve unilateral interface problems in terms of functional equations and discusses the supersonic wave field in detail for the two half planes problems, gives its analytical solutions and concludes that the solving procedures shown here can completely be applied to subsonic and transonic wave fields and other analogous problems.
基金Project supported by the National Natural Science Foundation of China(Nos.11472182 and 11272222)the China Scholarship Council(No.201907090051)。
文摘The propagation of shear-horizontal(SH)waves in the periodic layered nanocomposite is investigated by using both the nonlocal integral model and the nonlocal differential model with the interface effect.Based on the transfer matrix method and the Bloch theory,the band structures for SH waves with both vertical and oblique incidences to the structure are obtained.It is found that by choosing appropriate interface parameters,the dispersion curves predicted by the nonlocal differential model with the interface effect can be tuned to be the same as those based on the nonlocal integral model.Thus,by propagating the SH waves vertically and obliquely to the periodic layered nanostructure,we could invert,respectively,the interface mass density and the interface shear modulus,by matching the dispersion curves.Examples are further shown on how to determine the interface mass density and the interface shear modulus in theory.
基金the Doctoral Research Fund of University of South China(Grant No.210XQD016)the Outstanding Youth Foundation of the Hunan Education Department(Grant No.21B0406).
文摘Topological interface state(TIS)of elastic wave has attracted significant research interest due to its potential prospects in strengthening acoustic energy and enhancing the signal accuracy of damage identification and quantification.However,previous implementations on the interface modes of surface waves are limited to the non-adjustable frequency band and unalterable mode width.Here,we demonstrate the tunable TIS and topological resonance state(TRS)of Rayleigh wave by using a shape memory alloy(SMA)stubbed semi-infinite one-dimensional(1D)solid phononic crystals(PnCs),which simultaneously possesses the adjustable mode width.The mechanism of tunability stems from the phase transformation of the SMA between the martensite at low temperature and the austenite at high temperature.The tunable TIS of Rayleigh wave is realized by combining two bandgap-opened PnCs with different Zak phases.The TRS with adjustable mode width is achieved in the heterostructures by adding PnCs with Dirac point to the middle of two bandgap-opened PnCs with different Zak phases,which exhibits the extraordinary robustness in contrast to the ordinary Fabry–Perot resonance state.This research provides new possibilities for the highly adjustable Rayleigh wave manipulation and find promising applications such as tunable energy harvesters,wide-mode filters,and high-sensitivity Rayleigh wave detectors.
文摘When wind appears over the free surface, water waves and turbulence are generated by an interfacial shear stress. In particular, turbulent diffusion promotes significantly mass and momentum transport beneath the interface between the water and air significantly in ocean and lakes, and thus it is very important for global environment problems to reveal such turbulence property and coherent structure. Simultaneous measurements of velocities and free-surface elevation allow us to conduct reasonably the phase analysis of the coherent structure in interfacial shear layer. Furthermore, multi-point measurements such as PIV are very powerful to detect the space-time structure of coherent motions. Therefore, in the present study, we developed a specially designed PIV system which can measure the velocity components and surface-elevation fluctuation simultaneously by using two sets of high-speed cameras to reveal the coherent structure in the interfacial shear layer.
文摘The Green's function is used to solve the scattering far fieldsolution of SH-wave by a mov- able rigid cylindrical interfaceinclusion in a linear elastic body. First, a suitable Green'sfunction is devel- oped, which is the fundamental displacementsolution of an elastic half space with a movable rigid half-cylin-drical inclusion impacted by out-of-plane harmonic line source loadedat any point of its horizontal surface.
文摘Some of the main progress on the investigation of the mechanism of the wave formation in explosive welding at the Institute of Mechanics is summarized and otters'previous works are re- viewed.Our systematic experiments and analysis do not substantiate the theory of wave formation based on Karman vortex-street analogy or Helmholtz instability.On the contrary,they show that materi- al strength insensitive to strain rate plays an important role.A simple hydro-plastic model is presented to explain the main features regarding the interracial wave formation and to estimate the magnitude of wave length.The result is in broad agreement with experiment.
基金This work was supported by the National Natural Science Foundation of China(No.19772064)by the project of CAS KJ 951-1-20
文摘The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress intensity factor at the crack-tip is computed. The scattering problem can be decomposed into two problems: one is the reflection and refraction problem of general SH plane waves at perfect interface (with no crack); another is the scattering problem due to the existence of crack. For the first problem, the viscoelastic wave equation, displacement and stress continuity conditions across the interface are used to obtain the shear stress distribution at the interface. For the second problem, the integral transformation method is used to reduce the scattering problem into dual integral equations. Then, the dual integral equations are transformed into the Cauchy singular integral equation of first kind by introduction of the crack dislocation density function. Finally, the singular integral equation is solved by Kurtz's piecewise continuous function method. As a consequence, the crack opening displacement and dynamic stress intensity factor are obtained. At the end of the paper, a numerical example is given. The effects of incident angle, incident frequency and viscoelastic material parameters are analyzed. It is found that there is a frequency region for viscoelastic material within which the viscoelastic effects cannot be ignored.
基金Supported by the National Basic Research Program of China("973" Program)(613135)
文摘The effects of interface shape on stress wave distribution and attenuation were investiga- ted using finite element method ( FEM ). The simulation results indicate that when the stress wave propagates from SiC ceramic to A1 alloy, the tensile stress decreases and the attenuation coefficient of the stress wave increases with increasing central angle of the concave interface between SiC and A1. But for the convex interface, the tensile stress increases and attenuation coefficient decreases with increasing central angle. As the stress wave propagates from A1 alloy to SiC ceramic, the atten- uation coefficient of stress wave decreases with increasing the central angle of the concave interface. For the convex interface, the attenuation coefficient increases with increasing central angle.
文摘The interface wave propagating along an imperfect interface between two piezoelectric half spaces is derived firstly. The wave equations based on the interface modeled, called "spring model", are presented. The micro-scale structures of the interface for connecting the spring constant with the interface micro-structures are examined. For some simple interface micro-structure, exact dynamic solution is available, and the spring constant is obtained by comparing solutions. For the complex micro structures, it remains as a challenge of micro-mechanics modeling to connect the "spring constant" and micro-structure.