期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Simulation of Underground Reservoir Stability of Pumped Storage Power Station Based on Fluid-Structure Coupling
1
作者 Peng Qiao Shuangshuang Lan +1 位作者 Hongbiao Gu Zhengtan Mao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1381-1399,共19页
Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its co... Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state. 展开更多
关键词 Underground reservoir fluid-structure coupling numerical simulation pumped storage power station filling and discharge
下载PDF
Application of CFD and FEA Coupling to Predict Structural Dynamic Responses of A Trimaran in Uni-and Bi-Directional Waves
2
作者 LIAO Xi-yu XIA Jin-song +4 位作者 CHEN Zhan-yang TANG Qin ZHAO Nan ZHAO Wei-dong GUI Hong-bin 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期81-92,共12页
To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing... To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing from the existing coupled CFD-FEA method for monohull ships in head waves,the presented method equates the mass and stiffness of the whole ship to the hull shell so that any transverse and longitudinal section stress of the hull in oblique waves can be obtained.Firstly,verification study and sensitivity analysis are carried out by comparing the trimaran motions using different mesh sizes and time step schemes.Discussion on the wave elevation of uni-and bi-directional waves is also carried out.Then a comprehensive analysis on the structural responses of the trimaran in different uni-directional regular wave and bi-directional cross sea conditions is carried out,respectively.Finally,the differences in structural response characteristics of trimaran in different wave fields are studied.The results show that the present method can reduce the computational burden of the two-way fluid-structure interaction simulations. 展开更多
关键词 CFD-FEA fluid-structure coupling structural responses TRIMARAN bi-directional cross sea
下载PDF
Fluid-Structure Coupled Analysis of the Transient Thermal Stress in an Exhaust Manifold
3
作者 Liang Yi Wen Gang +2 位作者 Nenggui Pan Wangui Wang Shengshuai Mo 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2777-2790,共14页
The development of thermal stress in the exhaust manifold of a gasoline engine is considered.The problem is addresses in the frame of a combined approach wherefluid and structure are coupled using the GT-POWER and STA... The development of thermal stress in the exhaust manifold of a gasoline engine is considered.The problem is addresses in the frame of a combined approach wherefluid and structure are coupled using the GT-POWER and STAR-CCM+software.First,the external characteristic curve of the engine is compared with a one-dimen-sional simulation model,then the parameters of the model are modified until the curve matches the available experimental values.GT-POWER is then used to transfer the inlet boundary data under transient conditions to STAR-CCM+in real-time.The temperature profiles of the inner and outer walls of the exhaust manifold are obtained in this way,together with the thermal stress and thermal deformation of the exhaust manifold itself.Using this information,the original model is improved through the addition of connections.Moreover,the local branch pipes are optimized,leading to significant improvements in terms of thermal stress and thermal deforma-tion of the exhaust manifold(a 7%reduction in the maximum thermal stress). 展开更多
关键词 Exhaust manifold fluid-structure coupling temperaturefield thermal stress
下载PDF
VIBRATION ANALYSIS OF TURBINE BASED ON FLUID-STRUCTURE COUPLING 被引量:11
4
作者 LIU Demin LIU Xiaobing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期40-43,共4页
The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are ca... The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/rain, 500 r/min and 600 r/rain are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible. 展开更多
关键词 fluid-structure coupling Additional quality matrix Vibration Mode
下载PDF
Improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling 被引量:3
5
作者 Xumin GUO Chunliang XIAO +3 位作者 Hui MA Hui LI Xufang ZHANG Bangchun WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第8期1269-1288,共20页
The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more ... The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering. 展开更多
关键词 parallel liquid-filled pipe(PLFP) dynamic analysis improved frequency modeling and solution fluid-structure interaction(FSI) structure coupling
下载PDF
Transverse seismic response of beam aque-duct considering fluid-structure coupling
6
作者 季日臣 夏修身 +1 位作者 陈尧隆 王丽 《Acta Seismologica Sinica(English Edition)》 CSCD 2007年第3期348-355,共8页
Based on the theory of Housner, the transverse seismic response of beam aqueduct considering fluid-structure coupling is established. With the variation of aqueduct cross-section ratio of depth to width, the aqueduct ... Based on the theory of Housner, the transverse seismic response of beam aqueduct considering fluid-structure coupling is established. With the variation of aqueduct cross-section ratio of depth to width, the aqueduct transverse seismic response change. The transverse seismic response of a large-scale aqueduct in several work condition are calculated. It shows that the transverse seismic response is greatly influenced by the water mass in the aqueduct, but the shaking water play a TLD role. ff the whole water is appended aqueduct body, it will magnify seismic inertia action. When aqueduct cross-section is selected, the influence of ratio of depth and width to pier seismic response should be considered in order to reduce seismic action. 展开更多
关键词 AQUEDUCT fluid-structure coupling seismic response water model TLD action
下载PDF
Fluid-Structure Interaction Analysis of Flexible Plate with Partitioned Coupling Method
7
作者 W.Z.,Lim R.Y.,Xiao 《China Ocean Engineering》 SCIE EI CSCD 2019年第6期713-722,共10页
The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This m... The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This multidisciplinary field known as FSI has been expanded to engineering fields such as offshore structures, tall slender structures and other flexible structures applications. The motivation of this paper is to investigate the numerical model of two-way coupling FSI partitioned flexible plate structure under fluid flow. The adopted partitioned method and approach utilized the advantage of the existing numerical algorithms in solving the two-way coupling fluid and structural interactions. The flexible plate was subjected to a fluid flow which causes large deformation on the fluid domain from the oscillation of the flexible plate. Both fluid and flexible plate are subjected to the interaction of load transfer within two physics by using the strong and weak coupling methods of MFS and Load Transfer Physics Environment, respectively. The oscillation and deformation results have been validated which demonstrate the reliability of both strong and weak method in resolving the two-way coupling problem in contribution of knowledge to the feasibility field study of ocean engineering and civil engineering. 展开更多
关键词 fluid-structure interaction flexible plate structure two-way coupling partitioned method numerical simulation
下载PDF
Methodology for Comparing Coupling Algorithms for Fluid-Structure Interaction Problems
8
作者 Jason P. Sheldon Scott T. Miller Jonathan S. Pitt 《World Journal of Mechanics》 2014年第2期54-70,共17页
The multi-physics simulation of coupled fluid-structure interaction problems, with disjoint fluid and solid domains, requires one to choose a method for enforcing the fluid-structure coupling at the interface between ... The multi-physics simulation of coupled fluid-structure interaction problems, with disjoint fluid and solid domains, requires one to choose a method for enforcing the fluid-structure coupling at the interface between solid and fluid. While it is common knowledge that the choice of coupling technique can be very problem dependent, there exists no satisfactory coupling comparison methodology that allows for conclusions to be drawn with respect to the comparison of computational cost and solution accuracy for a given scenario. In this work, we develop a computational framework where all aspects of the computation can be held constant, save for the method in which the coupled nature of the fluid-structure equations is enforced. To enable a fair comparison of coupling methods, all simulations presented in this work are implemented within a single numerical framework within the deal.ii [1] finite element library. We have chosen the two-dimensional benchmark test problem of Turek and Hron [2] as an example to examine the relative accuracy of the coupling methods studied;however, the comparison technique is equally applicable to more complex problems. We show that for the specific case considered herein the monolithic approach outperforms partitioned and quasi-direct methods;however, this result is problem dependent and we discuss computational and modeling aspects which may affect other comparison studies. 展开更多
关键词 fluid-structure Interaction FSI FINITE Element Method Monolithic coupling Partitioned coupling Dirichlet-Neumann coupling MULTI-PHYSICS
下载PDF
Fully Coupled Fluid-Structure Interaction Model Based on Distributed Lagrange Multiplier/Fictitious Domain Method
9
作者 及春宁 董晓强 +1 位作者 赵冲久 王元战 《China Ocean Engineering》 SCIE EI 2007年第3期439-450,共12页
This paper, with a finite element method, studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations. With this fully coupled model, the... This paper, with a finite element method, studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations. With this fully coupled model, the rigid structure is taken as "fictitious" fluid with zero strain rate. Both fluid and structure are described by velocity and pressure. The whole domain, including fluid region and structure region, is modeled by the incompressible Navier-Stokes equations which are discretized with fixed Eulerian mesh. However, to keep the structure' s rigid body shape and behavior, a rigid body constraint is enforced on the "fictitious" fluid domain by use of the Distributed Lagrange Multipher/Fictitious Domain (DLM/ FD) method which is originally introduced to solve particulate flow problems by Glowinski et al. For the verification of the model presented herein, a 2D numerical wave tank is established to simulate small amplitude wave propagations, and then numerical results are compared with analytical solutions. Finally, a 2D example of fluid-structure interaction under wave dynamic forces provides convincing evidences for the method excellent solution quality and fidelity. 展开更多
关键词 fluid-structure interaction fully coupled model distributed Lagrange multiplier/fictitious domain method numerical wave tank
下载PDF
NUMERICAL SOLUTION OF FLUID-STRUCTURE INTERACTION IN LIQUID-FILLED PIPES BY METHOD OF CHARACTERISTICS 被引量:5
10
作者 YANG Chao YI Menglin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期44-49,共6页
Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenome... Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenomenon of FSI due to friction coupling and Poisson coupling being taken into account, is utilized to describe the FSI of fluid-filled pipe system. Terse compatibility equations are educed by the method of characteristics (MOC) to describe the fluid-filled pipe system. To shorten computing time needed to get the solutions under the condition of keeping accuracy requirement, two steps are adopted, firstly the time step Δt and divided number of the straight pipe are optimized, sec-ondly the mesh spacing Δz close to boundary is subdivided in several submeshes automatically ac-cording to the speed gradient of fluid. The mathematical model and arithmetic are validated by com-parisons between simulation solutions of two straight pipe systems and experiment known from lit-erature. 展开更多
关键词 fluid-structure interaction Method of characteristics coupling Fluid-filled pipe system OPTIMIZATION
下载PDF
A Novel Approach for the Numerical Simulation of Fluid-Structure Interaction Problems in the Presence of Debris 被引量:6
11
作者 Miaomiao Ren Xiaobin Shu 《Fluid Dynamics & Materials Processing》 EI 2020年第5期979-991,共13页
A novel algorithm is proposed for the simulation of fluid-structure interaction problems.In particular,much attention is paid to natural phenomena such as debris flow.The fluid part(debris flow fluid)is simulated in t... A novel algorithm is proposed for the simulation of fluid-structure interaction problems.In particular,much attention is paid to natural phenomena such as debris flow.The fluid part(debris flow fluid)is simulated in the framework of the smoothed particle hydrodynamics(SPH)approach,while the solid part(downstream obstacles)is treated using the finite element method(FEM).Fluid-structure coupling is implemented through dynamic boundary conditions.In particular,the software“TensorFlow”and an algorithm based on Python are combined to conduct the required calculations.The simulation results show that the dynamics of viscous and non-viscous debris flows can be extremely different when there are obstacles in the downstream direction.The implemented SPH-FEM coupling method can simulate the fluid-structure coupling problem with a reasonable approximation. 展开更多
关键词 fluid-structure coupling SPH FEM TensorFlow PYTHON dynamic boundary conditions
下载PDF
Fluid-structure interaction simulation of three-dimensional flexible hydrofoil in water tunnel 被引量:6
12
作者 Shiliang HU Chuanjing LU Yousheng HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第1期15-26,共12页
The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional can... The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional cantilevered hydrofoil in the water tunnel. The FVM solver and the coupled approach are verified and validated by compar- ing the numerical predictions with the experimental measurements, and good agreement is obtained concerning both the lift on the foil and the tip displacement. In the noncav- itating flow, the result indicates that the growth of the initial incidence angle and the Reynolds number improves the deformation of the foil, and the lift on the foil is increased by the twist deformation. The normalized twist angle and displacement along the span of the hydrofoil for different incidence angles and Reynolds numbers are almost uniform. For the cavitation flow, it is shown that the small amplitude vibration of the foil has limited influence on the developing process of the partial cavity, and the quasi two-dimensional cavity shedding does not change the deformation mode of the hydrofoil. However, the frequency spectrum of the lift on the foil contains the frequency which is associated with the first bend frequency of the hydrofoil. 展开更多
关键词 closely coupled approach fluid-structure interaction (FSI) hydrofoil cavitation
下载PDF
Failure pressure calculation of fracturing well based on fluid-structure interaction 被引量:2
13
作者 Jinzhou Zhao Lan Ren +1 位作者 Min Li Yongming Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第S1期450-456,共7页
Failure pressure is a key parameter in reservoir hydrofracturing operation. Existing analytical methods for calculating the failure pressure are based on the assumption that borehole fluid is under two extreme conditi... Failure pressure is a key parameter in reservoir hydrofracturing operation. Existing analytical methods for calculating the failure pressure are based on the assumption that borehole fluid is under two extreme conditions: non-infiltration or complete infiltration. The assumption is not suitable for the actual infiltration process, and this will cause a great error in practical calculation. It shows that during the injection process, the dynamic variation in effective stress-dependent permeability has an influence on the infiltration, and the influence also brings about calculation errors. Based on the fluid-structure interaction and finite element method (FEM), considering partial infiltration during injection process, a numerical model for calculating rock failure pressure is established. According to the analysis of permeability test results and response-surface method, a new variation rule of rock permeability with the change of effective stress is presented, and the relationships among the permeability, confining pressure and pore pressure are proposed. There are some differences between the dynamic value of permeability-effective-stress coefficient observed herein and the one obtained by the classical theory. Combining with the numerical model and the dynamic permeability, a coupling method for calculating failure pressure is developed. Comparison of field data and calculated values obtained by various methods shows that accurate values can be obtained by the coupling method. The coupling method can be widely applied to the calculation of failure pressure of reservoirs and complex wells to achieve effective fracturing operation. 展开更多
关键词 failure pressure fluid-structure interaction HYDROFRACTURING coupling method response-surface method
下载PDF
Finite element analysis of fluid-structure interaction in buried liquid-conveying pipeline 被引量:1
14
作者 朱庆杰 陈艳华 +1 位作者 刘廷权 代兆立 《Journal of Central South University》 SCIE EI CAS 2008年第S1期307-310,共4页
Long distance buried liquid-conveying pipeline is inevitable to cross faults and under earthquake action,it is necessary to calculate fluid-structure interaction(FSI) in finite element analysis under pipe-soil interac... Long distance buried liquid-conveying pipeline is inevitable to cross faults and under earthquake action,it is necessary to calculate fluid-structure interaction(FSI) in finite element analysis under pipe-soil interaction.Under multi-action of site,fault movement and earthquake,finite element model of buried liquid-conveying pipeline for the calculation of fluid structure interaction was constructed through combinative application of ADINA-parasolid and ADINA-native modeling methods,and the direct computing method of two-way fluid-structure coupling was introduced.The methods of solid and fluid modeling were analyzed,pipe-soil friction was defined in solid model,and special flow assumption and fluid structure interface condition were defined in fluid model.Earthquake load,gravity and displacement of fault movement were applied,also model preferences.Finite element research on the damage of buried liquid-conveying pipeline was carried out through computing fluid-structure coupling.The influences of pipe-soil friction coefficient,fault-pipe angle,and liquid density on axial stress of pipeline were analyzed,and optimum parameters were proposed for the protection of buried liquid-conveying pipeline. 展开更多
关键词 fluid-structure coupling BURIED liquid-conveying PIPELINE ADINA finite element FAULTS EARTHQUAKE
下载PDF
A BEM/FEM Coupling Approach for Fluid-Structure Interaction Simulation of Cell Motion
15
作者 S.Y.Wang P.Q.Chen +1 位作者 K.M.Lim B.C.Khoo 《Communications in Computational Physics》 SCIE 2010年第5期994-1026,共33页
In this paper, accurate and efficient simulation of cell motion in a biological fluid flow is investigated. The membrane of a moving cell is represented by athin shell composed of incompressible neo-Hookean elastic ma... In this paper, accurate and efficient simulation of cell motion in a biological fluid flow is investigated. The membrane of a moving cell is represented by athin shell composed of incompressible neo-Hookean elastic materials and the liquidsaround the membrane are approximated as incompressible Newtonian flows with lowReynolds numbers. The biofluid mechanics is approximated by the Stokes flow equations. A low-order BEM model is developed for the two biological fluids coupled atthe membrane surface. The moving boundary problem in fluid mechanics can be effectively solved using the BEM with a GMRES solver. The FEM model based on a flatthin shell element is further developed to predict the membrane load due to the largedeformation of a moving cell. Computational efficiency is greatly improved due tothe one-dimensional reduction in the present BEM and FEM models. The BEM solverfor the biological fluids is coupled with the FEM solver for the cell membrane at themembrane surface. The position of the membrane surface nodes is advanced in time byusing the classical fourth-order Runge-Kutta method. Numerical instability is avoidedby using a relatively small time step. Further numerical instabilities in the FEM solveris alleviated by using various techniques. The present method is applied to the FSIproblems of cell motion in a cylindrical flow. Numerical examples can illustrate thedistinct accuracy, efficiency and robustness of the present method. Furthermore, theimportance of bending stiffness of a cell membrane for stable cell motion simulation isemphasized. It is suggested that the present approach be an appealing alternative forsimulating the fluid-structure interaction of moving cells. 展开更多
关键词 fluid-structure interaction coupling approach boundary element method finite element method STABILITY thin shell element
原文传递
A Numerical Study on the Water Impact of the Rigid/Elastic Box-Like Structure
16
作者 YANG Jian SUN Zhao-chen LIANG Shu-xiu 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期333-342,共10页
Recent damages to the box-like structures caused by wave slamming have made it necessary to study the impact problems of this kind of structure. This paper showed findings from numerical simulations of the rigid/elast... Recent damages to the box-like structures caused by wave slamming have made it necessary to study the impact problems of this kind of structure. This paper showed findings from numerical simulations of the rigid/elastic structures, aiming to gain insights into the characteristics of the problem. The results of the rigid cases showed the significance of air compressibility during the impact process, while the slamming phenomena became quite different without the effect. In the elastic cases, the trapped air made the structure vibrate at frequencies much smaller than its eigenfrequencies. Besides, the structural deformation made it easy for the trapped air to escape outwards, which weakened the air cushioning effect, especially at high impact velocities. The above analysis gives the results when the structural symmetry axis was vertical to the water(vertical impacts). In addition, the results were given when the axis was oblique to the water(oblique impacts). Compared with the vertical cases, the impact phenomena and structural response showed asymmetry. This work used the computational fluid dynamics(CFD) method to describe fluid motion and the finite element method(FEM) for the deformable structure. A two-way coupling approach was used to deal with the fluid-structure interaction in the elastic cases. 展开更多
关键词 water impact fluid-structure interaction air compressibility box-like structures two-way coupling
下载PDF
Geometrically Nonlinear Flutter Analysis Based on CFD/CSD Methods and Wind Tunnel Experimental Verification
17
作者 Changrong Zhang Hongtao Guo +2 位作者 Li Yu Binbin Lv Hongya Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1743-1758,共16页
This study presents a high-speed geometrically nonlinear flutter analysis calculation method based on the highprecision computational fluid dynamics/computational structural dynamics methods.In the proposed method,the... This study presents a high-speed geometrically nonlinear flutter analysis calculation method based on the highprecision computational fluid dynamics/computational structural dynamics methods.In the proposed method,the aerodynamic simulation was conducted based on computational fluid dynamics,and the structural model was established using the nonlinear finite element model and tangential stiffness matrix.First,the equilibrium position was obtained using the nonlinear static aeroelastic iteration.Second,the structural modal under a steady aerodynamic load was extracted.Finally,the generalized displacement time curve was obtained by coupling the unsteady aerodynamics and linearized structure motion equations.Moreover,if the flutter is not at a critical state,the incoming flow dynamic pressure needs to be changed,and the above steps must be repeated until the vibration amplitude are equal.Furthermore,the high-speed geometrically nonlinear flutter of the wing-body assemblymodel with a high-aspect ratio was investigated,and the correctness of the method was verified using high-speed wind tunnel experiments.The results showed that the geometric nonlinearity of the large deformation of the wing caused in-plane bending to become a key factor in flutter characteristics and significantly decreased the dynamic pressure and frequency of the nonlinear flutter compared to those of the linear flutter. 展开更多
关键词 fluid-structure coupling aeroelasticity FLUTTER geometric nonlinearity numerical simulation
下载PDF
Numerical study on dynamic mechanism of brain volume and shear deformation under blast loading 被引量:4
18
作者 Zhijie Li Zhibo Du +8 位作者 Xiaochuan You Zhanli Liu Jian Cheng Chengcheng Luo Dongyang Chu Shaowu Ning Yue Kang Ce Yang Zhuo Zhuang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第5期1104-1119,共16页
Blast-induced traumatic brain injury(b-TBI)is a kind of significant injury to soldiers in the current military conflicts.However,the mechanism of b-TBI has not been well understood,and even there are some contradictor... Blast-induced traumatic brain injury(b-TBI)is a kind of significant injury to soldiers in the current military conflicts.However,the mechanism of b-TBI has not been well understood,and even there are some contradictory conclusions.It is crucial to reveal the dynamic mechanism of brain volume and shear deformations under blast loading for better understanding of b-TBI.In this paper,the numerical simulation method is adopted to carry out comprehensive and in-depth researches on this issue for the first time.Based on the coupled Eulerian-Lagrangian method,the fluid-structure coupling model of the blast wave and human head is developed to simulate two situations,namely the head subjected to the frontal and lateral impacts.The simulation results are analyzed to obtain the underlying dynamic mechanisms of brain deformation.The brain volume deformation is dominated by the local bending vibration of the skull,and the corresponding frequency for the forehead skull under the frontal impact and the lateral skull faced to the lateral impact is as high as 8 kHz and 5 kHz,respectively.This leads to the high-frequency fluctuation of brain pressure and the large pressure gradient along the skull,totally different from the dynamic response of brain under head collisions.While the brain shear deformation mainly depends on the relative tangential displacement between the skull and brain and the anatomical structure of inner skull,being not related to the brain pressure and its gradient.By further comparing the medical statistics,it is inferred that diffuse axonal injury and brain contusion,the two most common types of b-TBI,are mainly attributed to brain shear deformations.And the von Mises stress can be adopted as the indicator for these two brain injuries.This study can provide theoretical guidance for the diagnosis of b-TBI and the development of protective equipment. 展开更多
关键词 Blast-induced traumatic BRAIN INJURY Numerical head MODEL fluid-structure coupling MODEL Diffuse AXONAL INJURY BRAIN CONTUSION
下载PDF
基于MPS-FEM耦合方法研究波浪与结构的相互作用(英文) 被引量:3
19
作者 张冠宇 陈翔 万德成 《Journal of Marine Science and Application》 CSCD 2019年第4期387-399,共13页
Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynam... Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynamic slamming on marine vessels,tsunami impact on onshore structures,and sloshing in liquid containers)have aroused huge challenges to ocean engineering fields.In this paper,the moving particle semi-implicit(MPS)method and finite element method(FEM)coupled method is proposed for use in numerical investigations of the interaction between a regular wave and a horizontal suspended structure.The fluid domain calculated by the MPS method is dispersed into fluid particles,and the structure domain solved by the FEM method is dispersed into beam elements.The generation of the 2D regular wave is firstly conducted,and convergence verification is performed to determine appropriate particle spacing for the simulation.Next,the regular wave interacting with a rigid structure is initially performed and verified through the comparison with the laboratory experiments.By verification,the MPS-FEM coupled method can be applied to fluid-structure interaction(FSI)problems with waves.On this basis,taking the flexibility of structure into consideration,the elastic dynamic response of the structure subjected to the wave slamming is investigated,including the evolutions of the free surface,the variation of the wave impact pressures,the velocity distribution,and the structural deformation response.By comparison with the rigid case,the effects of the structural flexibility on wave-elastic structure interaction can be obtained. 展开更多
关键词 MPS-FEM coupled method fluid-structure interaction(FSI) Regular wave Wave impact pressure Structure deformation response
下载PDF
Partitioned Method of Insect Flapping Flight for Maneuvering Analysis 被引量:1
20
作者 Minato Onishi Daisuke Ishihara 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第10期145-175,共31页
This study proposed a partitioned method to analyze maneuvering of insects during flapping flight.This method decomposed the insect flapping flight into wing and body subsystems and then coupled them via boundary cond... This study proposed a partitioned method to analyze maneuvering of insects during flapping flight.This method decomposed the insect flapping flight into wing and body subsystems and then coupled them via boundary conditions imposed on the wing’s base using one-way coupling.In the wing subsystem,the strong coupling of the flexible wings and surrounding fluid was accurately analyzed using the finite element method to obtain the thrust forces acting on the insect’s body.The resulting thrust forces were passed from the wing subsystem to the body subsystem,and then rigid body motion was analyzed in the body subsystem.The rolling,yawing,and pitching motions were simulated using the proposed method as follows:In the rolling simulation,the difference of the stroke angle between the right and left wings caused a roll torque.In the yawing simulation,the initial feathering angle in the right wing only caused a yaw torque.In the pitching simulation,the difference between the front-and back-stroke angles in both the right and left wings caused a pitch torque.All three torques generated maneuvering motion comparable with that obtained in actual observations of insect flight.These results demonstrate that the proposed method can adequately simulate the fundamental maneuvers of insect flapping flight.In the present simulations,the maneuvering mechanisms were investigated at the governing equation level,which might be difficult using other approaches.Therefore,the proposed method will contribute to revealing the underlying insect flight mechanisms. 展开更多
关键词 INSECT FLAPPING flight MANEUVERABILITY fluid-structure interaction partitioned METHOD PROJECTION METHOD STRONGLY coupled METHOD one-way coupling finite element METHOD
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部