Fluid-structure interaction simulations are routinely used in the wind energy industry to evaluate the aerodynamic and structural dynamic performance of wind turbines. Most aero-elastic codes in modern times implement...Fluid-structure interaction simulations are routinely used in the wind energy industry to evaluate the aerodynamic and structural dynamic performance of wind turbines. Most aero-elastic codes in modern times implement a blade element momentum technique to model the rotor aerodynamics and a modal, multi-body, or finite-element approach to model the turbine structural dynamics. The present paper describes a novel fluid-structure coupling technique which combines a three- dimensional viscous-inviscid solver for horizontal-axis wind-turbine aerodynamics, called MIRAS, and the structural dynamics model used in the aero-elastic code FLEX5. The new code, MIRAS- FLEX, in general shows good agreement with the standard aero-elastic codes FLEX5 and FAST for various test cases. The structural model in MIRAS-FLEX acts to reduce the aerodynamic load computed by MIRAS, particularly near the tip and at high wind speeds.展开更多
Most algorithms of the immersed boundary method originated by Peskin are explicit when it comes to the computation of the elastic forces exerted by the immersed boundary to the fluid. A drawback of such an explicit ap...Most algorithms of the immersed boundary method originated by Peskin are explicit when it comes to the computation of the elastic forces exerted by the immersed boundary to the fluid. A drawback of such an explicit approach is a severe restriction on the time step size for maintaining numerical stability. An implicit immersed boundary method in two dimensions using the lattice Boltzmann approach has been proposed. This paper reports an extension of the method to three dimensions and its application to simulation of a massive flexible sheet interacting with an incompressible viscous flow.展开更多
Fluid-structure-interaction (FSI) phenomenon is common in science and engineering. The fluidinvolved in an FSI problem may be non-Newtonian such as blood. A popular framework for FSIproblems is Peskin’s imm...Fluid-structure-interaction (FSI) phenomenon is common in science and engineering. The fluidinvolved in an FSI problem may be non-Newtonian such as blood. A popular framework for FSIproblems is Peskin’s immersed boundary (IB) method. However, most of the IB formulations arebased on Newtonian fluids. In this letter, we report an extension of the IB framework to FSIinvolving Oldroyd-B and FENE-P fluids in three dimensions using the lattice Boltzmann approach.The new method is tested on two FSI model problems. Numerical experiments show that themethod is conditionally stable and convergent with the first order of accuracy.展开更多
A three-dimensional-membrane-type wing is investigated applying fluid-structure-interaction computations and complementary experiments.An analysis for three Reynolds numbers is conducted at various angles of attack.Th...A three-dimensional-membrane-type wing is investigated applying fluid-structure-interaction computations and complementary experiments.An analysis for three Reynolds numbers is conducted at various angles of attack.The computations are performed by means of the TAU-Code and the FEM Carat++solver.Wind-tunnel tests are carried out for performance analysis and to estimate the accuracy of the computations.In the results,the advantages of an elasto-flexible-lifting-surface concept are highlighted by comparing the formvariable surface to its rigid counterpart.The flexibility of the material and its adaptivity to the freestream allow the membrane to adjust its shape to the pressure distribution.For positive angles of attack,the airfoil’s camber increases resulting in an increase in the wing lifting capacity.Furthermore,the stall onset is postponed to higher angles of attack and the abrupt decrease in the lift is replaced by a gradual loss of it.展开更多
文摘Fluid-structure interaction simulations are routinely used in the wind energy industry to evaluate the aerodynamic and structural dynamic performance of wind turbines. Most aero-elastic codes in modern times implement a blade element momentum technique to model the rotor aerodynamics and a modal, multi-body, or finite-element approach to model the turbine structural dynamics. The present paper describes a novel fluid-structure coupling technique which combines a three- dimensional viscous-inviscid solver for horizontal-axis wind-turbine aerodynamics, called MIRAS, and the structural dynamics model used in the aero-elastic code FLEX5. The new code, MIRAS- FLEX, in general shows good agreement with the standard aero-elastic codes FLEX5 and FAST for various test cases. The structural model in MIRAS-FLEX acts to reduce the aerodynamic load computed by MIRAS, particularly near the tip and at high wind speeds.
基金supported by the US National Science Foundation (DMS-0713718)
文摘Most algorithms of the immersed boundary method originated by Peskin are explicit when it comes to the computation of the elastic forces exerted by the immersed boundary to the fluid. A drawback of such an explicit approach is a severe restriction on the time step size for maintaining numerical stability. An implicit immersed boundary method in two dimensions using the lattice Boltzmann approach has been proposed. This paper reports an extension of the method to three dimensions and its application to simulation of a massive flexible sheet interacting with an incompressible viscous flow.
基金the US National Science Foundation (DMS-1522554) for the support
文摘Fluid-structure-interaction (FSI) phenomenon is common in science and engineering. The fluidinvolved in an FSI problem may be non-Newtonian such as blood. A popular framework for FSIproblems is Peskin’s immersed boundary (IB) method. However, most of the IB formulations arebased on Newtonian fluids. In this letter, we report an extension of the IB framework to FSIinvolving Oldroyd-B and FENE-P fluids in three dimensions using the lattice Boltzmann approach.The new method is tested on two FSI model problems. Numerical experiments show that themethod is conditionally stable and convergent with the first order of accuracy.
基金The authors would like to thank the German Research Association for the funding of the project BR 1511/10-1.
文摘A three-dimensional-membrane-type wing is investigated applying fluid-structure-interaction computations and complementary experiments.An analysis for three Reynolds numbers is conducted at various angles of attack.The computations are performed by means of the TAU-Code and the FEM Carat++solver.Wind-tunnel tests are carried out for performance analysis and to estimate the accuracy of the computations.In the results,the advantages of an elasto-flexible-lifting-surface concept are highlighted by comparing the formvariable surface to its rigid counterpart.The flexibility of the material and its adaptivity to the freestream allow the membrane to adjust its shape to the pressure distribution.For positive angles of attack,the airfoil’s camber increases resulting in an increase in the wing lifting capacity.Furthermore,the stall onset is postponed to higher angles of attack and the abrupt decrease in the lift is replaced by a gradual loss of it.