In order to identify potential wood substitutes for the production of energy by gasification, binary blends (wood/miscanthus, miscanthus/straw and wood/straw) and ternary blends (wood, miscanthus and organic residu...In order to identify potential wood substitutes for the production of energy by gasification, binary blends (wood/miscanthus, miscanthus/straw and wood/straw) and ternary blends (wood, miscanthus and organic residue) were systematic tested in a laboratory bubbling fluidized bed gasification system. The results of experiments were compared with results of wood gasification. Of the binary blends, wood and miscanthus exhibited great potential as a wood substitute in fluidized bed gasification in terms of process stability and product gas quality. Adding 10 wt. % of organic residues to form ternary blends further improved the product gas quality. Gasification of fuels blended with straw tended to agglomerate in the fluidized bed because of straw's low ash melting temperature. This can be counteracted by adding Ca(OH)2 to fuels. Nonetheless, fuels blended with straw with higher percentages of Ca(OH)2 need further study to establish the optimal additive ratio.展开更多
Various process residues represent a kind of biomass resource already concentrated but containing water as much as 60 wt.%. These materials are generally treated as waste or simply combusted directly to generate heat....Various process residues represent a kind of biomass resource already concentrated but containing water as much as 60 wt.%. These materials are generally treated as waste or simply combusted directly to generate heat. Recently, we attempted to convert them into middle caloric gas to substitute for natural gas, as a chemical or a high-rank gaseous fuel for advanced combustion utilities. Such conversion is implemented through dual fluidized bed gasification (DFBG). Concerning the high water content of the fuels, DFBG was suggested to accomplish either with high-efficiency fuel drying in advance or direct decoupling of fuel drying/pyrolysis from char gasification and tar/hydrocarbon reforming. Along with fuel drying, calcium-based catalyst can be impregnated into the fuel, without much additional cost, to increase the fuel's gasification reactivity and to reduce tar formation. This article reports the Ca impregnation method and its resulting effects on gasification reactivity and tar suppression ability. Meanwhile, the principle of directly gasifying wet fuel with decoupled dual fluidized bed gasification (D-DFBG) is also highlighted.展开更多
To promote the utilization efficiency of coal resources,and to assist with the control of sulphur during gasification and/or downstream processes,it is essential to gain basic knowledge of sulphur transformation assoc...To promote the utilization efficiency of coal resources,and to assist with the control of sulphur during gasification and/or downstream processes,it is essential to gain basic knowledge of sulphur transformation associated with gasification performance.In this research we investigated the influence of O_2/C molar ratio both on gasification performance and sulphur transformation of a low rank coal,and the sulphur transformation mechanism was also discussed.Experiments were performed in a circulating fluidized bed gasifier with O_2/C molar ratio ranging from 0.39 to 0.78 mol/mol.The results showed that increasing the O_2/C molar ratio from 0.39 to 0.78 mol/mol can increase carbon conversion from 57.65%to 91.92%,and increase sulphur release ratio from 29.66%to63.11%.The increase of O_2/C molar ratio favors the formation of H_2S,and also favors the retained sulphur transforming to more stable forms.Due to the reducing conditions of coal gasification,H_2S is the main form of the released sulphur,which could be formed by decomposition of pyrite and by secondary reactions.Bottom char shows lower sulphur content than fly ash,and mainly exist as sulphates.X-ray photoelectron spectroscopy(XPS)measurements also show that the intensity of pyrite declines and the intensity of sulphates increases for fly ash and bottom char,and the change is more obvious for bottom char.During CFB gasification process,bigger char particles circulate in the system and have longer residence time for further reaction,which favors the release of sulphur species and can enhance the retained sulphur transforming to more stable forms.展开更多
During fluidized bed gasification,sulfur in coal will be released,which will lead to environmental pollution.The release behavior of sulfur in fluidized bed gasification has not been fully studied,although fluidized b...During fluidized bed gasification,sulfur in coal will be released,which will lead to environmental pollution.The release behavior of sulfur in fluidized bed gasification has not been fully studied,although fluidized bed gasification technology has a promising prospect.Thus the release behaviors of sulfur during fluidized bed gasification were investigated comprehensively through two aspects:temperature and reaction atmosphere.During air gasification,the main gaseous sulfur is H_(2)S,followed by COS,and the yield of SO_(2)and CS_(2)is low.With the increase of temperature,both of the released sulfur and the percentage of inorganic sulfur in gas phase increase.Under the same working condition,the distributions of sulfur forms in gasification residues are analogous.Organic sulfur is the dominate sulfur forms in the gasification residues.Sulfate in residues increases while organic sulfur decreases with increasing temperature.Among three reaction atmospheres(CO_(2)/steam/air)studied,the yield of H_(2)S is the most among the above four kinds of gaseous sulfur.The percentage of H_(2)S in gaseous sulfur(H_(2)S/Sg)is the highest in the process of steam gasification,while most sulfur is released during air gasification.The sequencing of H_(2)/CO is the same as that of H_(2)S/Sg,while the trend of sulfur release rate is consistent with that of carbon conversion rate.The distributions of sulfur species in the fly ash of CO_(2)gasification and steam gasification are similar,while the sulfate content in the fly ash of air gasification is the highest.展开更多
Fluidized bed reactor is widely used in coal char-CO2 gasification. In this work, the production of syngas by using a fluidized bed gasification technique was first investigated and then the effect of the produced syn...Fluidized bed reactor is widely used in coal char-CO2 gasification. In this work, the production of syngas by using a fluidized bed gasification technique was first investigated and then the effect of the produced syngas on the performance of the solid oxide fuel cell with a configuration of La0.4Sr0.6Co0.2 Fe0.7 Nb0.1O3-δ//La0.8Sr0.2Ga0.83Mg0.17O3-δ//La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ(LSCFN//LSGM//LSCFN) was studied. During the syngas production, we found that the volume fraction of CO increased with the increment of gasification temperature, and it reached a maximum value of 88.8%, corresponding to a composition of 0.76% H2, 88.8% CO, and 10.44% CO2, when the ratio of oxygen mass flow rate to that of coal char (Mo2/Mchar) increased to 0.29. In the following utilization of the produced syngas in solid oxide fuel cells, it was found that the increasing CO volume fraction in the syngas results in a gradual increase of the peak power density of the LSCFN//LSGM//LSCFN cell. The maximum peak power density of 410 mW/cm^2 was achieved for the syngas produced at 0.29 of Mo2/Mchar. In the stability test, the cell voltage decreased by 4% at a constant current density of 0.475 A/cm^2 after 54 h when fueled with the syngas with the composition of 0.76% H2, 88.8% CO, and 10.44% CO2. It reveals that a carbon deposition with the content of 13.66% in the anode is attributed to the cell performance degradation.展开更多
文摘In order to identify potential wood substitutes for the production of energy by gasification, binary blends (wood/miscanthus, miscanthus/straw and wood/straw) and ternary blends (wood, miscanthus and organic residue) were systematic tested in a laboratory bubbling fluidized bed gasification system. The results of experiments were compared with results of wood gasification. Of the binary blends, wood and miscanthus exhibited great potential as a wood substitute in fluidized bed gasification in terms of process stability and product gas quality. Adding 10 wt. % of organic residues to form ternary blends further improved the product gas quality. Gasification of fuels blended with straw tended to agglomerate in the fluidized bed because of straw's low ash melting temperature. This can be counteracted by adding Ca(OH)2 to fuels. Nonetheless, fuels blended with straw with higher percentages of Ca(OH)2 need further study to establish the optimal additive ratio.
基金The Natural Science Foundation of China(NSFC) financed the first period of research on the decoupled dual fluidized bed gasification(20606034,20776144)
文摘Various process residues represent a kind of biomass resource already concentrated but containing water as much as 60 wt.%. These materials are generally treated as waste or simply combusted directly to generate heat. Recently, we attempted to convert them into middle caloric gas to substitute for natural gas, as a chemical or a high-rank gaseous fuel for advanced combustion utilities. Such conversion is implemented through dual fluidized bed gasification (DFBG). Concerning the high water content of the fuels, DFBG was suggested to accomplish either with high-efficiency fuel drying in advance or direct decoupling of fuel drying/pyrolysis from char gasification and tar/hydrocarbon reforming. Along with fuel drying, calcium-based catalyst can be impregnated into the fuel, without much additional cost, to increase the fuel's gasification reactivity and to reduce tar formation. This article reports the Ca impregnation method and its resulting effects on gasification reactivity and tar suppression ability. Meanwhile, the principle of directly gasifying wet fuel with decoupled dual fluidized bed gasification (D-DFBG) is also highlighted.
基金supported by the National Natural Science Foundation of China(No.21306193)the International Science&Technology Cooperation Program of China(No.2014DFG61680)
文摘To promote the utilization efficiency of coal resources,and to assist with the control of sulphur during gasification and/or downstream processes,it is essential to gain basic knowledge of sulphur transformation associated with gasification performance.In this research we investigated the influence of O_2/C molar ratio both on gasification performance and sulphur transformation of a low rank coal,and the sulphur transformation mechanism was also discussed.Experiments were performed in a circulating fluidized bed gasifier with O_2/C molar ratio ranging from 0.39 to 0.78 mol/mol.The results showed that increasing the O_2/C molar ratio from 0.39 to 0.78 mol/mol can increase carbon conversion from 57.65%to 91.92%,and increase sulphur release ratio from 29.66%to63.11%.The increase of O_2/C molar ratio favors the formation of H_2S,and also favors the retained sulphur transforming to more stable forms.Due to the reducing conditions of coal gasification,H_2S is the main form of the released sulphur,which could be formed by decomposition of pyrite and by secondary reactions.Bottom char shows lower sulphur content than fly ash,and mainly exist as sulphates.X-ray photoelectron spectroscopy(XPS)measurements also show that the intensity of pyrite declines and the intensity of sulphates increases for fly ash and bottom char,and the change is more obvious for bottom char.During CFB gasification process,bigger char particles circulate in the system and have longer residence time for further reaction,which favors the release of sulphur species and can enhance the retained sulphur transforming to more stable forms.
基金This work was financially supported by National key research and development program of China(No.2017YFB0602302)Beijing Municipal Science and Technology Project(No.Z181100005118006).
文摘During fluidized bed gasification,sulfur in coal will be released,which will lead to environmental pollution.The release behavior of sulfur in fluidized bed gasification has not been fully studied,although fluidized bed gasification technology has a promising prospect.Thus the release behaviors of sulfur during fluidized bed gasification were investigated comprehensively through two aspects:temperature and reaction atmosphere.During air gasification,the main gaseous sulfur is H_(2)S,followed by COS,and the yield of SO_(2)and CS_(2)is low.With the increase of temperature,both of the released sulfur and the percentage of inorganic sulfur in gas phase increase.Under the same working condition,the distributions of sulfur forms in gasification residues are analogous.Organic sulfur is the dominate sulfur forms in the gasification residues.Sulfate in residues increases while organic sulfur decreases with increasing temperature.Among three reaction atmospheres(CO_(2)/steam/air)studied,the yield of H_(2)S is the most among the above four kinds of gaseous sulfur.The percentage of H_(2)S in gaseous sulfur(H_(2)S/Sg)is the highest in the process of steam gasification,while most sulfur is released during air gasification.The sequencing of H_(2)/CO is the same as that of H_(2)S/Sg,while the trend of sulfur release rate is consistent with that of carbon conversion rate.The distributions of sulfur species in the fly ash of CO_(2)gasification and steam gasification are similar,while the sulfate content in the fly ash of air gasification is the highest.
基金financially supported by the National Basic Research Program of China (Grant Nos. 2012CB215404, 2012CB215406)State Key Laboratory of Power Systems in Tsinghua University (No. SKLD15Z02, Fuel Cell Distributed Power Generation System)One-hundred Leading Talents Development Project for Progress on Science and Technology of Beijing (No. 041504130)
文摘Fluidized bed reactor is widely used in coal char-CO2 gasification. In this work, the production of syngas by using a fluidized bed gasification technique was first investigated and then the effect of the produced syngas on the performance of the solid oxide fuel cell with a configuration of La0.4Sr0.6Co0.2 Fe0.7 Nb0.1O3-δ//La0.8Sr0.2Ga0.83Mg0.17O3-δ//La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ(LSCFN//LSGM//LSCFN) was studied. During the syngas production, we found that the volume fraction of CO increased with the increment of gasification temperature, and it reached a maximum value of 88.8%, corresponding to a composition of 0.76% H2, 88.8% CO, and 10.44% CO2, when the ratio of oxygen mass flow rate to that of coal char (Mo2/Mchar) increased to 0.29. In the following utilization of the produced syngas in solid oxide fuel cells, it was found that the increasing CO volume fraction in the syngas results in a gradual increase of the peak power density of the LSCFN//LSGM//LSCFN cell. The maximum peak power density of 410 mW/cm^2 was achieved for the syngas produced at 0.29 of Mo2/Mchar. In the stability test, the cell voltage decreased by 4% at a constant current density of 0.475 A/cm^2 after 54 h when fueled with the syngas with the composition of 0.76% H2, 88.8% CO, and 10.44% CO2. It reveals that a carbon deposition with the content of 13.66% in the anode is attributed to the cell performance degradation.