期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Circulating turbulent fluidization-A new fluidization regime or just a transitional phenomenon 被引量:13
1
作者 Jesse Zhu 《Particuology》 SCIE EI CAS CSCD 2010年第6期640-644,共5页
While circulating fluidized bed (CFB) reactor has many advantages over the more conventional turbulent fluidized bed (TFB) reactor, it does at least have one significant shortcoming-the rather dilute solids volume... While circulating fluidized bed (CFB) reactor has many advantages over the more conventional turbulent fluidized bed (TFB) reactor, it does at least have one significant shortcoming-the rather dilute solids volume concentration in CFB reactor gives rise to less ideal reaction intensity. On the other hand, while having higher reaction intensity, TFB reactor has one fatal drawback of particle back-mixing, making it not suitable for certain reactions such as catalytic reaction where the catalyst requires frequent regeneration. This paper describes some key issues in the development of a circulating turbulent fluidized bed (CTFB) reactor that combines the advantages of both TFB and CFB, that is, to have the high reaction intensity as in TFB but and also to have a suppressed solids back-mixing as in CFB due to a continuous net upflow of solids flux through the bed. Experimental results show enough evidence to suggest that a new fluidization regime is formed, the characteristics of which appears to be distinct from those observed in a regular TFB and from those in either the bottom or the upper sections of regular CFB and/or high-density CFB (HDCFB). Fundamentally, the difference is that particle-particle interaction (collision) dominates the motion of particles in CTFB and TFB, while gas-particle interaction (drag force) is the key element that determines the two phase flow in CFB including HDCFB. 展开更多
关键词 Circulating-turbulent fluidized bed Flow regime Circulating-turbulent fluidizationturbulent fluidized bed Circulating fluidized bed
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部