The flow behavior of gas and solid was investigated in FCC simulator of φ710×4000/φ870×11000mm.The axial and radial distributions were detected with matrix fiber-opticprobes.It was found that the distribut...The flow behavior of gas and solid was investigated in FCC simulator of φ710×4000/φ870×11000mm.The axial and radial distributions were detected with matrix fiber-opticprobes.It was found that the distribution of bubble diameter in the turbulent region of the fluidizedbed of fine particles was different from the results reported for lab-scale experiments.Radially therewere three areas,i.e.,the central(r/R=0-0.4),the intermittent or stable(r/R=0.4-0.8)and thenear wall(r/R=0.8-1.0)areas respectively.It was noticed that bubbles were almost non-existing atthe near wall area.Hence,according to the coalescence and splitting theory of bubbles,a two-areamodel of bubble diameter distribution was proposed and a dimensionless parameter(γ_M)regarded asan index for’quality’of fluidization was deduced.展开更多
Injection of gas-liquid sprays into gas-solid fluidized beds finds application in many industries.Effective mixing and distribution of liquid feed and solid bed material is paramount to ensure an efficient and profita...Injection of gas-liquid sprays into gas-solid fluidized beds finds application in many industries.Effective mixing and distribution of liquid feed and solid bed material is paramount to ensure an efficient and profitable process.Despite its long-term use,the mechanism of liquid injection into gas-solid fluidized beds continues to raise questions and is only partially understood.This paper provides a thorough and up-to-date review of experimental and numerical investigations of gas-liquid sprays into gas-solid fluidized beds conducted over the past decades.Based on the surveyed literature,a phenomenological description of the prevalent mechanisms of gas-liquid injection under different operating conditions is presented.This review identifies suitable computational fluid dynamic models for simulating the mechanisms involved in gas-liquid-solid interactions along with recommendations for future numer-ical and experimental work.展开更多
Two modes of gas-solid riser operation, i.e., fluid catalytic cracking (FCC) and circulating fluidized bed combustor (CFBC), have been recognized in literature; particularly in the understanding of choking phenome...Two modes of gas-solid riser operation, i.e., fluid catalytic cracking (FCC) and circulating fluidized bed combustor (CFBC), have been recognized in literature; particularly in the understanding of choking phenomena. This work compares these two modes of operation through computational fluid dynamics (CFD) simulation. In CFD simulations, the different operations are represented by fixing appropriate boundary conditions: solids flux or solids inventory. It is found that the FCC and CFBC modes generally have the same dependence of solids flux on the mean solids volume fraction or solids inventory. However, during the choking transition, the FCC mode of operation needs more time to reach a steady state; thus the FCC system may have insufficient time to respond to valve adjustments or flow state change, leading to the choking. The difference between FCC and CFBC systems is more pronounced for the systems with longer risers. A more detailed investigation of these two modes of riser operation may require a three-dimensional full loop simulation with dynamic valve adjustment.展开更多
In our present work, a post-riser regeneration technology (PRRT) for fluid catalytic cracking (FCC) units was developed to deal with increasingly heavier feedstock and hereby the larger amount of coke deposited on...In our present work, a post-riser regeneration technology (PRRT) for fluid catalytic cracking (FCC) units was developed to deal with increasingly heavier feedstock and hereby the larger amount of coke deposited on the catalyst particles during reaction. This technology can make full use of the advantages of riser regenerator, such as high cokeburning efficiency and low residual carbon, and at the same time overcome its disadvantages, such as difficulty in starting combustion. The average particles concentration on the cross section of the system was studied on a large scale cold model experimental set-up. Also a necessary software was developed by combining the hydrodynamics research results in our work with the coke-burning kinetics model and the heat and mass transfer model developed by previous researchers. The simulation results showed that the PRRT could increase regeneration capability by 16.28%-26.24% over the conventional turbulent fluidized bed regenerator under the similar operation conditions, and that the residual carbon could be kept below 0.1 wt %.展开更多
Experiments were conducted on a lab-scale fluidized bed to study the distribution of liquid ethanol injected into fluidized catalyst particles. Electrical capacitance measurements were used to study the liquid distrib...Experiments were conducted on a lab-scale fluidized bed to study the distribution of liquid ethanol injected into fluidized catalyst particles. Electrical capacitance measurements were used to study the liquid distribution inside the bed, and a new method was developed to determine the liquid content inside fluidized beds of fluid catalytic cracking particles. The results shed light on the complex liquid injection region and reveal the strong effect of superficial gas velocity on liquid distribution inside the fluidized bed, which is also affected by the imbibition of liquid inside particle pores. Particle internal porosity was found to play a major role when the changing mass of liquid in the bed was monitored. The results also showed that the duration of liquid injection affected liquid-solid contact inside the bed and that liouid-solid mixin~ was not homogeneous durin~ the limited liouid injection time.展开更多
文摘The flow behavior of gas and solid was investigated in FCC simulator of φ710×4000/φ870×11000mm.The axial and radial distributions were detected with matrix fiber-opticprobes.It was found that the distribution of bubble diameter in the turbulent region of the fluidizedbed of fine particles was different from the results reported for lab-scale experiments.Radially therewere three areas,i.e.,the central(r/R=0-0.4),the intermittent or stable(r/R=0.4-0.8)and thenear wall(r/R=0.8-1.0)areas respectively.It was noticed that bubbles were almost non-existing atthe near wall area.Hence,according to the coalescence and splitting theory of bubbles,a two-areamodel of bubble diameter distribution was proposed and a dimensionless parameter(γ_M)regarded asan index for’quality’of fluidization was deduced.
基金The study was funded by Innovation Fund Denmark(Project 7045-00009A)。
文摘Injection of gas-liquid sprays into gas-solid fluidized beds finds application in many industries.Effective mixing and distribution of liquid feed and solid bed material is paramount to ensure an efficient and profitable process.Despite its long-term use,the mechanism of liquid injection into gas-solid fluidized beds continues to raise questions and is only partially understood.This paper provides a thorough and up-to-date review of experimental and numerical investigations of gas-liquid sprays into gas-solid fluidized beds conducted over the past decades.Based on the surveyed literature,a phenomenological description of the prevalent mechanisms of gas-liquid injection under different operating conditions is presented.This review identifies suitable computational fluid dynamic models for simulating the mechanisms involved in gas-liquid-solid interactions along with recommendations for future numer-ical and experimental work.
基金This work is financially supported by the National Natural Science Foundation of China under Grant Nos. 91334204 and 21576263, the Chinese Academy of Sciences under Grant No. XDA07080100, and the Ministry of Science and Technology of the People's Republic of China under Grant No. 2012CB215003.
文摘Two modes of gas-solid riser operation, i.e., fluid catalytic cracking (FCC) and circulating fluidized bed combustor (CFBC), have been recognized in literature; particularly in the understanding of choking phenomena. This work compares these two modes of operation through computational fluid dynamics (CFD) simulation. In CFD simulations, the different operations are represented by fixing appropriate boundary conditions: solids flux or solids inventory. It is found that the FCC and CFBC modes generally have the same dependence of solids flux on the mean solids volume fraction or solids inventory. However, during the choking transition, the FCC mode of operation needs more time to reach a steady state; thus the FCC system may have insufficient time to respond to valve adjustments or flow state change, leading to the choking. The difference between FCC and CFBC systems is more pronounced for the systems with longer risers. A more detailed investigation of these two modes of riser operation may require a three-dimensional full loop simulation with dynamic valve adjustment.
文摘In our present work, a post-riser regeneration technology (PRRT) for fluid catalytic cracking (FCC) units was developed to deal with increasingly heavier feedstock and hereby the larger amount of coke deposited on the catalyst particles during reaction. This technology can make full use of the advantages of riser regenerator, such as high cokeburning efficiency and low residual carbon, and at the same time overcome its disadvantages, such as difficulty in starting combustion. The average particles concentration on the cross section of the system was studied on a large scale cold model experimental set-up. Also a necessary software was developed by combining the hydrodynamics research results in our work with the coke-burning kinetics model and the heat and mass transfer model developed by previous researchers. The simulation results showed that the PRRT could increase regeneration capability by 16.28%-26.24% over the conventional turbulent fluidized bed regenerator under the similar operation conditions, and that the residual carbon could be kept below 0.1 wt %.
文摘Experiments were conducted on a lab-scale fluidized bed to study the distribution of liquid ethanol injected into fluidized catalyst particles. Electrical capacitance measurements were used to study the liquid distribution inside the bed, and a new method was developed to determine the liquid content inside fluidized beds of fluid catalytic cracking particles. The results shed light on the complex liquid injection region and reveal the strong effect of superficial gas velocity on liquid distribution inside the fluidized bed, which is also affected by the imbibition of liquid inside particle pores. Particle internal porosity was found to play a major role when the changing mass of liquid in the bed was monitored. The results also showed that the duration of liquid injection affected liquid-solid contact inside the bed and that liouid-solid mixin~ was not homogeneous durin~ the limited liouid injection time.