Production planning models generated by common modeling systems do not involve constraints for process operations, and a solution optimized by these models is called a quasi-optimal plan. The quasi-optimal plan cannot...Production planning models generated by common modeling systems do not involve constraints for process operations, and a solution optimized by these models is called a quasi-optimal plan. The quasi-optimal plan cannot be executed in practice some time for no corresponding operating conditions. In order to determine a practi- cally feasible optimal plan and corresponding operating conditions of fluidized catalytic cracking unit (FCCU), a novel close-loop integrated strategy, including determination of a quasi-optimal plan, search of operating conditions of FCCU and revision of the production planning model, was proposed in this article. In the strategy, a generalized genetic algorithm (GA) coupled with a sequential process simulator of FCCU was applied to search operating conditions implementing the quasi-optimal plan of FCCU and output the optimal individual in the GA search as a final genetic individual. When no corresponding operating conditions were found, the final genetic individual based correction (FGIC) method was presented to revise the production planning model, and then a new quasi-optimal production plan was determined. The above steps were repeated until a practically feasible optimal plan and corresponding operating conditions of FCCU were obtained. The close-loop integrated strategy was validated by two cases, and it was indicated that the strategy was efficient in determining a practically executed optimal plan and corresponding operating conditions of FCCU.展开更多
The regeneration of fluidized catalytic cracking(FCC)catalysts is an essential process in petroleum processing.The current study focused the regeneration reaction characteristics of spent fluidized catalytic cracking ...The regeneration of fluidized catalytic cracking(FCC)catalysts is an essential process in petroleum processing.The current study focused the regeneration reaction characteristics of spent fluidized catalytic cracking catalyst(SFCC)at different atmospheres with influences on pore evolution and activity,for a potential way to reduce emission,produce moderate chemical product(CO),and maintain catalyst activity.The results show that regeneration in air indicates a satisfaction on removing coke on the catalyst surface while giving a poor effect on eliminating the coke inside micropores.This is attributed that the combustion in air led to a higher temperature and further transformed kaolinite phase to silicaaluminum spinel crystals,which tended to collapse and block small pores or expand large pores,with similar results observed in pure O_(2)atmosphere.Nevertheless,catalysts regenerated in O_(2)/CO_(2)diminished the combustion damage to the pore structure,of which the micro porosity after regeneration increased by 32.4% and the total acid volume rose to 27.1%.The regeneration in pure CO_(2)displayed low conversion rate due to the endothermic reaction and low reactivity.The coexistence of gasification and partial oxidation can promote regeneration and maintain the original structure and good reactivity.Finally,a mechanism of the regeneration reaction at different atmospheres was revealed.展开更多
In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen...In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen phosphate impregnation. The modified zeolites were subjected to steam treatment at 800 °C for 4 h (100% steam) and employed as catalysts for olefin catalyticcracking (OCC) of full‐range fluid catalytic cracking (FCC) gasoline. X‐ray diffraction, N2 physicaladsorption and NH3 temperature‐programmed desorption analysis indicated that, although significantimprovements to the hydrothermal stability of nano‐sized HZSM‐5 zeolites can be observedwhen adopting both phosphorus modification strategies, impregnation with trimethyl phosphatedisplays further enhancement of the hydrothermal stability. This is because higher structural crystallinityis retained, larger specific surface areas/micropore volumes form, and there are greaternumbers of surface acid sites. Reaction experiments conducted using a fixed‐bed micro‐reactor(catalyst/oil ratio = 4, time on stream = 4 s) showed OCC of full‐range FCC gasoline-under a fluidized‐bed reaction mode configuration-to be a viable solution for the olefin problem of FCC gasoline.This reaction significantly decreased the olefin content in the full‐range FCC gasoline feed, andspecifically heavy‐end olefins, by converting the olefins into value‐added C2–C4 olefins and aromatics.At the same time, sulfide content of the gasoline decreased via a non‐hydrodesulfurization process.Nano‐sized HZSM‐5 zeolites modified with trimethyl phosphate exhibited enhanced catalytic performance for OCC of full‐range FCC gasoline.展开更多
In this study,the deactivation mechanism caused by high accessibility of strong acid sites for the waste FCC catalyst was proposed and verified for the first time.Based on the proposed deactivation mechanism,magnesium...In this study,the deactivation mechanism caused by high accessibility of strong acid sites for the waste FCC catalyst was proposed and verified for the first time.Based on the proposed deactivation mechanism,magnesium modification through magnesium chloride impregnation was employed for the regeneration of waste FCC catalyst.The regenerated waste FCC catalyst was characterized,with its heavy oil catalytic cracking performance tested.The characterization results indicated that,in comparison with the unmodified waste FCC catalyst,the acid sites strength of the regenerated waste FCC catalyst was weakened,with no prominent alterations of the total acid sites quantity and textural properties.The heavy oil catalytic cracking results suggested that the catalytic cracking performance of the regenerated waste FCC catalyst was greatly improved due to the suitable surface acidity of the sample.In contrast with the unmodified waste FCC catalyst,the gasoline yield over the regenerated waste FCC catalyst significantly increased by 3.04 percentage points,meanwhile the yield of dry gas,LPG,coke and bottoms obviously decreased by 0.36,0.81,1.28 and 0.87 percentage points,respectively,making the regenerated waste FCC catalyst serve as a partial substitute for the fresh FCC catalyst.Finally,the acid property change mechanism was discussed.展开更多
The cracking of polyolefins, especially polyethylene in the molten state was effectively catalyzed by the powdery spent FCC (Fluid Catalytic Cracking) catalyst which was dispersed in it. The activation energy of the...The cracking of polyolefins, especially polyethylene in the molten state was effectively catalyzed by the powdery spent FCC (Fluid Catalytic Cracking) catalyst which was dispersed in it. The activation energy of the catalytic cracking of polyethylene was about 74 kJ/mol. The cracked product was naphtha and middle distillate as the major product and gaseous hydrocarbon (C1-C4) as the minor product while little heavy oil was produced. The chemical compositions of the product were: aromatic hydrocarbons, isoparaffins and branched olefins, whereas that of the non-catalyzed products were: n-olefins and n-paraffins with minor amount of dienes with increasing the process time. Additionally, the product pattern shifted from naphtha rich product to kerosene and gas-oil rich product. However, any catalytic product showed low fluid point (〈 -10 ℃), while that of the non-catalyzed product was as high as 40 ℃. Catalyst could process, more than 100 times by weight of polyethylene with fairly small amount (- 30 wt%) of coke deposition. Spent catalyst gave higher hydrocarbons while fresh catalyst gave gaseous product as the major product. Other polyolefins such as polypropylene and polystyrene were tested on same catalyst to show that their reactivity is higher than that of polyethylene and gave the aliphatic products, alkyl benzenes and C6-C9 iso-paraffins as the major product. Product pattern of the cracked product suggested that the reaction proceeded via the primary reactions making paraffins and olefins which were followed by the isomerization, secondary cracking, aromatization and hydrogen transfer which based on the carbenium ion mechanism.展开更多
The demand for propylene has been growing recently. The concentration of olefins in the gasoline is strictly limited by the related environmental regulations. The olefins contained in the gasoline used as the feed cou...The demand for propylene has been growing recently. The concentration of olefins in the gasoline is strictly limited by the related environmental regulations. The olefins contained in the gasoline used as the feed could be cracked into light olefins to slash the olefin concentration in the gasoline to yield more propylene at the same time. The monolithic catalyst washcoated on the modified ZSM-5 zeolite was used in the experiments. The effect of the temperature, the Si/Al ratio in ZSM-5 and the addition of the rare earth elements on the selectivities and the yields of the light olefins were studied. The high yields of propylene and butene could be obtained under the experimental conditions of a higher temperature and Si/Al ratio with the addition of rare earth elements.展开更多
Fluidized catalytic cracking slurry oil-in-water emulsion(FCCSE)was prepared by using interfacial complexes generation method that was simple and versatile.The critical factors influencing the sample preparation proce...Fluidized catalytic cracking slurry oil-in-water emulsion(FCCSE)was prepared by using interfacial complexes generation method that was simple and versatile.The critical factors influencing the sample preparation process were optimized,for instance,the optimum value of the mixed hydrophile-lipophile balance of compound emulsifier was 11.36,the content of compound emulsifier was 4 wt%,the emulsification temperature was 75C,the agitation speed was 200 rpm,and the emulsification time was 30e45 min.The performance as a drilling fluid additive was also investigated with respect to rheological properties,filtration loss and inhibition of FCCSE.Experimental results showed that FCCSE was favorable to inhibiting clay expansion and dispersion and reducing fluid loss.Furthermore,it had good compatibility with other additives and did not affect the rheological properties of drilling fluids.FCCSE exhibited better performance than the available emulsified asphalt.It has a promising application as anti-collapse agent in petroleum and natural gas drilling.展开更多
The flow behavior of gas and solid was investigated in FCC simulator of φ710×4000/φ870×11000mm.The axial and radial distributions were detected with matrix fiber-opticprobes.It was found that the distribut...The flow behavior of gas and solid was investigated in FCC simulator of φ710×4000/φ870×11000mm.The axial and radial distributions were detected with matrix fiber-opticprobes.It was found that the distribution of bubble diameter in the turbulent region of the fluidizedbed of fine particles was different from the results reported for lab-scale experiments.Radially therewere three areas,i.e.,the central(r/R=0-0.4),the intermittent or stable(r/R=0.4-0.8)and thenear wall(r/R=0.8-1.0)areas respectively.It was noticed that bubbles were almost non-existing atthe near wall area.Hence,according to the coalescence and splitting theory of bubbles,a two-areamodel of bubble diameter distribution was proposed and a dimensionless parameter(γ_M)regarded asan index for’quality’of fluidization was deduced.展开更多
使用200 m L固定床反应器,在专用催化剂作用下,考察了工艺条件对催化裂化(FCC)轻汽油原料催化裂解生产低碳烯烃反应性能的影响。结果表明:在专用催化剂作用下,FCC轻汽油原料经催化裂解可制得低碳烯烃中的乙烯、丙烯和丁烯,并且产物中的m...使用200 m L固定床反应器,在专用催化剂作用下,考察了工艺条件对催化裂化(FCC)轻汽油原料催化裂解生产低碳烯烃反应性能的影响。结果表明:在专用催化剂作用下,FCC轻汽油原料经催化裂解可制得低碳烯烃中的乙烯、丙烯和丁烯,并且产物中的m(丙烯)/m(乙烯)大于1.40,远高于其经蒸汽热裂解增产丙烯工艺下的0.43;反应温度对C_(≥5)液相产物组成中的芳烃收率增幅影响很大;较高的质量空速不利于低碳烯烃的生成;去离子水的存在及增多,不仅促进丙烯的生成,还有利于抑制催化剂结焦生炭。在反应温度为500℃、液时质量空速为1.0 h^(-1)、反应压力为0.13 MPa、注水量[m(去离子水)/m(FCC轻汽油原料)]为40%的催化裂解优化工艺条件下,丙烯、乙烯、丁烯收率分别达4.44%,9.87%,8.27%,m(丙烯)/m(乙烯)达2.22。展开更多
文摘Production planning models generated by common modeling systems do not involve constraints for process operations, and a solution optimized by these models is called a quasi-optimal plan. The quasi-optimal plan cannot be executed in practice some time for no corresponding operating conditions. In order to determine a practi- cally feasible optimal plan and corresponding operating conditions of fluidized catalytic cracking unit (FCCU), a novel close-loop integrated strategy, including determination of a quasi-optimal plan, search of operating conditions of FCCU and revision of the production planning model, was proposed in this article. In the strategy, a generalized genetic algorithm (GA) coupled with a sequential process simulator of FCCU was applied to search operating conditions implementing the quasi-optimal plan of FCCU and output the optimal individual in the GA search as a final genetic individual. When no corresponding operating conditions were found, the final genetic individual based correction (FGIC) method was presented to revise the production planning model, and then a new quasi-optimal production plan was determined. The above steps were repeated until a practically feasible optimal plan and corresponding operating conditions of FCCU were obtained. The close-loop integrated strategy was validated by two cases, and it was indicated that the strategy was efficient in determining a practically executed optimal plan and corresponding operating conditions of FCCU.
基金supported by the National Natural Science Foundation of China(21908063)the Shanghai Pujiang Program(21PJ1402300)the Fundamental Research Funds of the Central Universities(JKB01211715 and JKB01221677)。
文摘The regeneration of fluidized catalytic cracking(FCC)catalysts is an essential process in petroleum processing.The current study focused the regeneration reaction characteristics of spent fluidized catalytic cracking catalyst(SFCC)at different atmospheres with influences on pore evolution and activity,for a potential way to reduce emission,produce moderate chemical product(CO),and maintain catalyst activity.The results show that regeneration in air indicates a satisfaction on removing coke on the catalyst surface while giving a poor effect on eliminating the coke inside micropores.This is attributed that the combustion in air led to a higher temperature and further transformed kaolinite phase to silicaaluminum spinel crystals,which tended to collapse and block small pores or expand large pores,with similar results observed in pure O_(2)atmosphere.Nevertheless,catalysts regenerated in O_(2)/CO_(2)diminished the combustion damage to the pore structure,of which the micro porosity after regeneration increased by 32.4% and the total acid volume rose to 27.1%.The regeneration in pure CO_(2)displayed low conversion rate due to the endothermic reaction and low reactivity.The coexistence of gasification and partial oxidation can promote regeneration and maintain the original structure and good reactivity.Finally,a mechanism of the regeneration reaction at different atmospheres was revealed.
基金supported by the National Natural Science Foundation of China (21603023)the Petro China Innovation Foundation, China (2014D-5006-0501)~~
文摘In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen phosphate impregnation. The modified zeolites were subjected to steam treatment at 800 °C for 4 h (100% steam) and employed as catalysts for olefin catalyticcracking (OCC) of full‐range fluid catalytic cracking (FCC) gasoline. X‐ray diffraction, N2 physicaladsorption and NH3 temperature‐programmed desorption analysis indicated that, although significantimprovements to the hydrothermal stability of nano‐sized HZSM‐5 zeolites can be observedwhen adopting both phosphorus modification strategies, impregnation with trimethyl phosphatedisplays further enhancement of the hydrothermal stability. This is because higher structural crystallinityis retained, larger specific surface areas/micropore volumes form, and there are greaternumbers of surface acid sites. Reaction experiments conducted using a fixed‐bed micro‐reactor(catalyst/oil ratio = 4, time on stream = 4 s) showed OCC of full‐range FCC gasoline-under a fluidized‐bed reaction mode configuration-to be a viable solution for the olefin problem of FCC gasoline.This reaction significantly decreased the olefin content in the full‐range FCC gasoline feed, andspecifically heavy‐end olefins, by converting the olefins into value‐added C2–C4 olefins and aromatics.At the same time, sulfide content of the gasoline decreased via a non‐hydrodesulfurization process.Nano‐sized HZSM‐5 zeolites modified with trimethyl phosphate exhibited enhanced catalytic performance for OCC of full‐range FCC gasoline.
基金supported by the Exploratory Research Program of Petrochemical Research Institute (16-yk-01-03),PetroChina
文摘In this study,the deactivation mechanism caused by high accessibility of strong acid sites for the waste FCC catalyst was proposed and verified for the first time.Based on the proposed deactivation mechanism,magnesium modification through magnesium chloride impregnation was employed for the regeneration of waste FCC catalyst.The regenerated waste FCC catalyst was characterized,with its heavy oil catalytic cracking performance tested.The characterization results indicated that,in comparison with the unmodified waste FCC catalyst,the acid sites strength of the regenerated waste FCC catalyst was weakened,with no prominent alterations of the total acid sites quantity and textural properties.The heavy oil catalytic cracking results suggested that the catalytic cracking performance of the regenerated waste FCC catalyst was greatly improved due to the suitable surface acidity of the sample.In contrast with the unmodified waste FCC catalyst,the gasoline yield over the regenerated waste FCC catalyst significantly increased by 3.04 percentage points,meanwhile the yield of dry gas,LPG,coke and bottoms obviously decreased by 0.36,0.81,1.28 and 0.87 percentage points,respectively,making the regenerated waste FCC catalyst serve as a partial substitute for the fresh FCC catalyst.Finally,the acid property change mechanism was discussed.
文摘The cracking of polyolefins, especially polyethylene in the molten state was effectively catalyzed by the powdery spent FCC (Fluid Catalytic Cracking) catalyst which was dispersed in it. The activation energy of the catalytic cracking of polyethylene was about 74 kJ/mol. The cracked product was naphtha and middle distillate as the major product and gaseous hydrocarbon (C1-C4) as the minor product while little heavy oil was produced. The chemical compositions of the product were: aromatic hydrocarbons, isoparaffins and branched olefins, whereas that of the non-catalyzed products were: n-olefins and n-paraffins with minor amount of dienes with increasing the process time. Additionally, the product pattern shifted from naphtha rich product to kerosene and gas-oil rich product. However, any catalytic product showed low fluid point (〈 -10 ℃), while that of the non-catalyzed product was as high as 40 ℃. Catalyst could process, more than 100 times by weight of polyethylene with fairly small amount (- 30 wt%) of coke deposition. Spent catalyst gave higher hydrocarbons while fresh catalyst gave gaseous product as the major product. Other polyolefins such as polypropylene and polystyrene were tested on same catalyst to show that their reactivity is higher than that of polyethylene and gave the aliphatic products, alkyl benzenes and C6-C9 iso-paraffins as the major product. Product pattern of the cracked product suggested that the reaction proceeded via the primary reactions making paraffins and olefins which were followed by the isomerization, secondary cracking, aromatization and hydrogen transfer which based on the carbenium ion mechanism.
文摘The demand for propylene has been growing recently. The concentration of olefins in the gasoline is strictly limited by the related environmental regulations. The olefins contained in the gasoline used as the feed could be cracked into light olefins to slash the olefin concentration in the gasoline to yield more propylene at the same time. The monolithic catalyst washcoated on the modified ZSM-5 zeolite was used in the experiments. The effect of the temperature, the Si/Al ratio in ZSM-5 and the addition of the rare earth elements on the selectivities and the yields of the light olefins were studied. The high yields of propylene and butene could be obtained under the experimental conditions of a higher temperature and Si/Al ratio with the addition of rare earth elements.
基金the financial support of Geological Survey project of Ministry of Land and Resources(NO.12120113097400).
文摘Fluidized catalytic cracking slurry oil-in-water emulsion(FCCSE)was prepared by using interfacial complexes generation method that was simple and versatile.The critical factors influencing the sample preparation process were optimized,for instance,the optimum value of the mixed hydrophile-lipophile balance of compound emulsifier was 11.36,the content of compound emulsifier was 4 wt%,the emulsification temperature was 75C,the agitation speed was 200 rpm,and the emulsification time was 30e45 min.The performance as a drilling fluid additive was also investigated with respect to rheological properties,filtration loss and inhibition of FCCSE.Experimental results showed that FCCSE was favorable to inhibiting clay expansion and dispersion and reducing fluid loss.Furthermore,it had good compatibility with other additives and did not affect the rheological properties of drilling fluids.FCCSE exhibited better performance than the available emulsified asphalt.It has a promising application as anti-collapse agent in petroleum and natural gas drilling.
文摘The flow behavior of gas and solid was investigated in FCC simulator of φ710×4000/φ870×11000mm.The axial and radial distributions were detected with matrix fiber-opticprobes.It was found that the distribution of bubble diameter in the turbulent region of the fluidizedbed of fine particles was different from the results reported for lab-scale experiments.Radially therewere three areas,i.e.,the central(r/R=0-0.4),the intermittent or stable(r/R=0.4-0.8)and thenear wall(r/R=0.8-1.0)areas respectively.It was noticed that bubbles were almost non-existing atthe near wall area.Hence,according to the coalescence and splitting theory of bubbles,a two-areamodel of bubble diameter distribution was proposed and a dimensionless parameter(γ_M)regarded asan index for’quality’of fluidization was deduced.
文摘使用200 m L固定床反应器,在专用催化剂作用下,考察了工艺条件对催化裂化(FCC)轻汽油原料催化裂解生产低碳烯烃反应性能的影响。结果表明:在专用催化剂作用下,FCC轻汽油原料经催化裂解可制得低碳烯烃中的乙烯、丙烯和丁烯,并且产物中的m(丙烯)/m(乙烯)大于1.40,远高于其经蒸汽热裂解增产丙烯工艺下的0.43;反应温度对C_(≥5)液相产物组成中的芳烃收率增幅影响很大;较高的质量空速不利于低碳烯烃的生成;去离子水的存在及增多,不仅促进丙烯的生成,还有利于抑制催化剂结焦生炭。在反应温度为500℃、液时质量空速为1.0 h^(-1)、反应压力为0.13 MPa、注水量[m(去离子水)/m(FCC轻汽油原料)]为40%的催化裂解优化工艺条件下,丙烯、乙烯、丁烯收率分别达4.44%,9.87%,8.27%,m(丙烯)/m(乙烯)达2.22。