Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simu...Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simulations (DNS) with a direct-forcing/fictitious domain (DF/FD) method were conducted to study the hydrodynamic performance of a CFBB. The effects of particle-fluid density ratio, particle number, and fil- ter screens preventing particles flowing out of the reactor were investigated. Depending on density ratio, two flow patterns are evident: the circulation mode in which the suspension rises along one sidewall and descends along the other sidewall, and the non-circulation mode in which the whole suspension roughly flows upward. The circulation mode takes place under non-neutral-buoyancy where the particle sedimentation dominates, whereas the non-circulation mode occurs under pure or near-neutral buoy- ancy with particle-fluid density ratios of unity or near unity. With particle-fluid density ratio of 1.01, the bioartificial liver reactor performs optimally as the significant particle accumulation existing in the non-circulation mode and the large shear forces on particles in the circulation mode are avoided. At higher particle volume fractions, more particles accumulate at the filter screens and a secondary counter circulation to the primary flow is observed at the top of the bed. Modelled as porous media, the filter screens play a negative role on particle fluidization velocities; without screens, particles are fluidized faster because of the higher fluid velocities in the jet center region. This work extends the DF/FD-based DNS to a fluidized bed and accounts for effects from inclined side walls and porous media, providing some hydrodynamics insight that is important for CFBB design and operation optimization.展开更多
基金The authors gratefully acknowledge the supports from China Postdoctoral Science Foundation (Grant No. 2014M550327), the opening foundation of the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and the National Natural Science Foundation of China (Grant No. 11372275). The authors are also grateful to Chengbo Yu and Liang Yu for their introduction of the choanoid fluidized bed bioreactor and helpful discussions.
文摘Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simulations (DNS) with a direct-forcing/fictitious domain (DF/FD) method were conducted to study the hydrodynamic performance of a CFBB. The effects of particle-fluid density ratio, particle number, and fil- ter screens preventing particles flowing out of the reactor were investigated. Depending on density ratio, two flow patterns are evident: the circulation mode in which the suspension rises along one sidewall and descends along the other sidewall, and the non-circulation mode in which the whole suspension roughly flows upward. The circulation mode takes place under non-neutral-buoyancy where the particle sedimentation dominates, whereas the non-circulation mode occurs under pure or near-neutral buoy- ancy with particle-fluid density ratios of unity or near unity. With particle-fluid density ratio of 1.01, the bioartificial liver reactor performs optimally as the significant particle accumulation existing in the non-circulation mode and the large shear forces on particles in the circulation mode are avoided. At higher particle volume fractions, more particles accumulate at the filter screens and a secondary counter circulation to the primary flow is observed at the top of the bed. Modelled as porous media, the filter screens play a negative role on particle fluidization velocities; without screens, particles are fluidized faster because of the higher fluid velocities in the jet center region. This work extends the DF/FD-based DNS to a fluidized bed and accounts for effects from inclined side walls and porous media, providing some hydrodynamics insight that is important for CFBB design and operation optimization.