A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ...A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.展开更多
Creatures with longer bodies in nature like snakes and eels moving in water commonly generate a large swaying of their bodies or tails,with the purpose of producing significant frictions and collisions between body an...Creatures with longer bodies in nature like snakes and eels moving in water commonly generate a large swaying of their bodies or tails,with the purpose of producing significant frictions and collisions between body and fluid to provide the power of consecutive forward force.This swaying can be idealized by considering oscillations of a soft beam immersed in water when waves of vibration travel down at a constant speed.The present study employs a kind of large deformations induced by nonlinear vibrations of a soft pipe conveying fluid to design an underwater bio-inspired snake robot that consists of a rigid head and a soft tail.When the head is fixed,experiments show that a second mode vibration of the tail in water occurs as the internal flow velocity is beyond a critical value.Then the corresponding theoretical model based on the absolute nodal coordinate formulation(ANCF)is established to describe nonlinear vibrations of the tail.As the head is free,the theoretical modeling is combined with the computational fluid dynamics(CFD)analysis to construct a fluid-structure interaction(FSI)simulation model.The swimming speed and swaying shape of the snake robot are obtained through the FSI simulation model.They are in good agreement with experimental results.Most importantly,it is demonstrated that the propulsion speed can be improved by 21%for the robot with vibrations of the tail compared with that without oscillations in the pure jet mode.This research provides a new thought to design driving devices by using nonlinear flow-induced vibrations.展开更多
Pulsed-jet cleaning is recognized as the most efficient method to regenerate bag dust collectors traditionally used in industrial processes to control the emission of particulates.In this study,non-woven needle felt f...Pulsed-jet cleaning is recognized as the most efficient method to regenerate bag dust collectors traditionally used in industrial processes to control the emission of particulates.In this study,non-woven needle felt filter bags with and without a film coating material have been analyzed considering different geometries(different number N of pairs of pleated filter bag sides)in the frame of dedicated low-pressure pulsed-jet cleaning experiments.The flow structure inside the bag and the response characteristics of its wall have also been analyzed numerically through a computational fluid-dynamics/structural-dynamics(CFD-CSD)unidirectional fluid-solid coupling method.As shown by the experiments,the peak pressure(P_(0))on the wall of the filter bag with N=8 and 12 is higher,which indicates dust can be removed more effectively in these cases.The peak pressure on the wall increases first and then decreases along the direction of the bag length,while the peak pressure of the pleated filter bag with nonwoven needled felt film coating is greater than that without film coating.A comprehensive analysis of the time variation of acceleration,deformation,strain,stress and other factors,has led to the conclusion that the pleated filter bag with N=12 would be the optimal choice.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52078010)Beijing Natural Science Foundation(Grant No.JQ19029).
文摘A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.
基金the National Natural Science Foundation of China(No.12072119)。
文摘Creatures with longer bodies in nature like snakes and eels moving in water commonly generate a large swaying of their bodies or tails,with the purpose of producing significant frictions and collisions between body and fluid to provide the power of consecutive forward force.This swaying can be idealized by considering oscillations of a soft beam immersed in water when waves of vibration travel down at a constant speed.The present study employs a kind of large deformations induced by nonlinear vibrations of a soft pipe conveying fluid to design an underwater bio-inspired snake robot that consists of a rigid head and a soft tail.When the head is fixed,experiments show that a second mode vibration of the tail in water occurs as the internal flow velocity is beyond a critical value.Then the corresponding theoretical model based on the absolute nodal coordinate formulation(ANCF)is established to describe nonlinear vibrations of the tail.As the head is free,the theoretical modeling is combined with the computational fluid dynamics(CFD)analysis to construct a fluid-structure interaction(FSI)simulation model.The swimming speed and swaying shape of the snake robot are obtained through the FSI simulation model.They are in good agreement with experimental results.Most importantly,it is demonstrated that the propulsion speed can be improved by 21%for the robot with vibrations of the tail compared with that without oscillations in the pure jet mode.This research provides a new thought to design driving devices by using nonlinear flow-induced vibrations.
基金This study was financially supported by Anhui Provincial Scientific and Technological Major Project(Grant No.18030801109).
文摘Pulsed-jet cleaning is recognized as the most efficient method to regenerate bag dust collectors traditionally used in industrial processes to control the emission of particulates.In this study,non-woven needle felt filter bags with and without a film coating material have been analyzed considering different geometries(different number N of pairs of pleated filter bag sides)in the frame of dedicated low-pressure pulsed-jet cleaning experiments.The flow structure inside the bag and the response characteristics of its wall have also been analyzed numerically through a computational fluid-dynamics/structural-dynamics(CFD-CSD)unidirectional fluid-solid coupling method.As shown by the experiments,the peak pressure(P_(0))on the wall of the filter bag with N=8 and 12 is higher,which indicates dust can be removed more effectively in these cases.The peak pressure on the wall increases first and then decreases along the direction of the bag length,while the peak pressure of the pleated filter bag with nonwoven needled felt film coating is greater than that without film coating.A comprehensive analysis of the time variation of acceleration,deformation,strain,stress and other factors,has led to the conclusion that the pleated filter bag with N=12 would be the optimal choice.