IN a previous paper, we have studied the energy transfer mechanism among the PBS-thy-lakoid complex in detail by using steady-state spectra and deconvolution techniques. The ex-perimental results indicated that the en...IN a previous paper, we have studied the energy transfer mechanism among the PBS-thy-lakoid complex in detail by using steady-state spectra and deconvolution techniques. The ex-perimental results indicated that the energy transfer from PBS to two reaction centers of PS Ⅰand PS Ⅱ were parallel, and confirmed the model which was suggested by Mullineaxu.展开更多
The energy-transfer process between sodium (omega-[2-(alpha -naphthyl)ethoxy]undecanoate (FP-)* and sodium omega -9-anthrylmethyl glutarate (AFP(-)) is accelerated by the formation of ESAg when cetyltrimethylammonium ...The energy-transfer process between sodium (omega-[2-(alpha -naphthyl)ethoxy]undecanoate (FP-)* and sodium omega -9-anthrylmethyl glutarate (AFP(-)) is accelerated by the formation of ESAg when cetyltrimethylammonium chloride (S16(+)) has been added to the solvent system of FP-* and AFP(-). This result is yet another evidence for the formation of ESAg.展开更多
The conjugate of R-phycoerythrin (R-PE) and C-phycocyanin (C-PC) was synthesized through a heterobifunctional coupling reagent, N-succinimidyl 3-(2-pyridyldithio) propionate. The molar ratio of R-PE to C-PC was determ...The conjugate of R-phycoerythrin (R-PE) and C-phycocyanin (C-PC) was synthesized through a heterobifunctional coupling reagent, N-succinimidyl 3-(2-pyridyldithio) propionate. The molar ratio of R-PE to C-PC was determined by absorption spectra, and the result was 2:1. The energy transfer phenomena were observed from steady-state fluorescence spectra. The calculated result showed that the energy transfer efficiency from R-PE to C-PC was 88%. The energy transfer kinetics was determined by picosecond time-resolved fluorescence spectra. The time constant of energy transfer from R-PE to C-PC was 80 ps, which was much longer than that in the rood of native phycobilisomes.展开更多
Ultra time-resolved fluorescence spectra were used to study the energy transfer processes and mechanism of complex PEC/PC/APC at 77 K, which was reconstructed with phycobiliproteins (PEC, PC and APC) ofAnabaena variab...Ultra time-resolved fluorescence spectra were used to study the energy transfer processes and mechanism of complex PEC/PC/APC at 77 K, which was reconstructed with phycobiliproteins (PEC, PC and APC) ofAnabaena variabilis, and has intact light-harvesting system and single terminal emitter. The energy transfer relationships between different chromophores especially between rod and core were also discussed based on fluorescence decay kinetic under different detected wavelengths. As a result, we got the possible energy transfer pathways and transfer time constants to be 29 ps between two PEC trimers, 12 ps between PEC and C-PC, 51 ps between rod and core.展开更多
文摘IN a previous paper, we have studied the energy transfer mechanism among the PBS-thy-lakoid complex in detail by using steady-state spectra and deconvolution techniques. The ex-perimental results indicated that the energy transfer from PBS to two reaction centers of PS Ⅰand PS Ⅱ were parallel, and confirmed the model which was suggested by Mullineaxu.
文摘The energy-transfer process between sodium (omega-[2-(alpha -naphthyl)ethoxy]undecanoate (FP-)* and sodium omega -9-anthrylmethyl glutarate (AFP(-)) is accelerated by the formation of ESAg when cetyltrimethylammonium chloride (S16(+)) has been added to the solvent system of FP-* and AFP(-). This result is yet another evidence for the formation of ESAg.
文摘The conjugate of R-phycoerythrin (R-PE) and C-phycocyanin (C-PC) was synthesized through a heterobifunctional coupling reagent, N-succinimidyl 3-(2-pyridyldithio) propionate. The molar ratio of R-PE to C-PC was determined by absorption spectra, and the result was 2:1. The energy transfer phenomena were observed from steady-state fluorescence spectra. The calculated result showed that the energy transfer efficiency from R-PE to C-PC was 88%. The energy transfer kinetics was determined by picosecond time-resolved fluorescence spectra. The time constant of energy transfer from R-PE to C-PC was 80 ps, which was much longer than that in the rood of native phycobilisomes.
文摘Ultra time-resolved fluorescence spectra were used to study the energy transfer processes and mechanism of complex PEC/PC/APC at 77 K, which was reconstructed with phycobiliproteins (PEC, PC and APC) ofAnabaena variabilis, and has intact light-harvesting system and single terminal emitter. The energy transfer relationships between different chromophores especially between rod and core were also discussed based on fluorescence decay kinetic under different detected wavelengths. As a result, we got the possible energy transfer pathways and transfer time constants to be 29 ps between two PEC trimers, 12 ps between PEC and C-PC, 51 ps between rod and core.