A kind of fluorescence fiber-optic thermometer is devised based on the solid-state ruby fluorescence material. The characteristics of fluorescence material absorption and emission are analyzed, and the fiber-optic tem...A kind of fluorescence fiber-optic thermometer is devised based on the solid-state ruby fluorescence material. The characteristics of fluorescence material absorption and emission are analyzed, and the fiber-optic temperature measurement probe in ruby is developed. This system is particularly adaptable to the temperature measurement in the range of 20℃ to 600℃. During the experiment, this method is proved to be useful to temperature measurement with high resolution and precision.展开更多
A sapphire fibre thermal probe with Cr^3+ ion-doped end is developed by using the laser heated pedestal growth method. The fluorescence thermal probe offers advantages of compact structure, high performance and abili...A sapphire fibre thermal probe with Cr^3+ ion-doped end is developed by using the laser heated pedestal growth method. The fluorescence thermal probe offers advantages of compact structure, high performance and ability to withstand high temperature in a detection range from room temperature to 450℃. Based on the fast Fourier transform (FFT), the fluorescence lifetime is obtained from the tangent function of phase angle of the non-zeroth terms in the FFT result. This method has advantages such as quick calculation, high accuracy and immunity to the background noise. This FFT method is compared with other traditional fitting methods, indicating that the standard deviation of the FFT method is about half of that of the Prony method and about 1/6 of that of the log-fit method. And the FFT method is immune to the background noise involved in a signal. So, the FFT method is an excellent way of processing signals. In addition, a phase-lock amplifier can effectively suppress the noise.展开更多
In this study,an alkynyl-modified aromatic dicarboxylic acid bifunctional ligand was selected to construct lanthanide compound{[Eu_(4)(ebdc)_(6)(4,4-bpy)_(0.5)(H_(2)O)_(4.5)]·(C_(2)H_(5)OH)_(1.25)(H_(2)O)}_(n)(Eu...In this study,an alkynyl-modified aromatic dicarboxylic acid bifunctional ligand was selected to construct lanthanide compound{[Eu_(4)(ebdc)_(6)(4,4-bpy)_(0.5)(H_(2)O)_(4.5)]·(C_(2)H_(5)OH)_(1.25)(H_(2)O)}_(n)(Eu-MOF,H_(2)ebdc=5-ethynyl-isophthalic acid,4,4-bpy=4,4-bipyridine,MOF=metal-organic framework),of which the uncoordinated alkynyl group would be used to anchor silver nanoclusters(Ag NCs).The Eu-MOF exhibits double emission peaks,located at 492 and 611 nm,respectively,in which the high-energy blue emission is associated with alkynyl-modified ligand while the low-energy red emission belongs to characteristic emission of Eu3+,indicating that ligands can effectively sensitize Eu3+luminescence.The intensity ratio of the dual emission fluorescence peaks of Eu-MOF displays a good linear relationship with temperature,which realizes the detection function in the low temperature region of 75–275 K,the thermal sensitivity reaches 1.5398%·K^(−1).After anchoring the Ag NCs,the high-energy blue emission is significantly quenched,indicating that the Ag NCs are indeed confined into the framework and interact with the alkynyl group,and thus change the overall electronic distribution.This is the first case of anchoring Ag NCs by a luminescent Eu-MOF and studying nanocluster loading by using spectroscopic properties.In addition,the Ag NCs@Eu-MOF also shows a good catalytic activity for cycloaddition reaction from CO_(2)and epoxides.This study not only provides ideas for exploring the changes in optical properties of luminescent MOFs and Ag NCs caused by confinement effect,but also expands their potential applications in various fields.展开更多
Real-time monitoring and accurate treatment are of great significance for reducing the side effects during the cancer therapy.In this work,we rationally prepared a smart nanoprobe based on core-shell terbium metal-org...Real-time monitoring and accurate treatment are of great significance for reducing the side effects during the cancer therapy.In this work,we rationally prepared a smart nanoprobe based on core-shell terbium metal-organic gramework(MOF)with highly effective photothermal conversion capacity and drug release efficiency under near-infrared light irradiation for real-time fluorescence imaging-guided multimodal therapy.The nanoprobe can achieve prominent photothermal therapy and controllable drug release,act as a fluorescence thermometer,and also real-time feedback of temperature is expected to be achieved.At the same time,the two-photon ligand design significantly improves the tissue penetration ability of the nanoprobe.Our work is expected to provide a reference for precise treatment and real-time monitoring of tumors and at the same time provide new ideas for the formulation of individualized treatment plans.展开更多
A simple and effective polymer fluorescent thermosensitive system was successfully developed based on the synergistic effect of excimer/monomer interconversion of pyrene derivatives and electrostatic interaction betwe...A simple and effective polymer fluorescent thermosensitive system was successfully developed based on the synergistic effect of excimer/monomer interconversion of pyrene derivatives and electrostatic interaction between polyelectrolyte and charged fluorophore. As for the system, the excimer-monomer conversion, thermosensitive behavior and thermo-responsive reversibility were investigated experimentally. Temperature variation and temperature-distribution induced fluorescence changes can be observed directly by naked eyes. Thus, this polymer system holds promise for serving as a fluorescent thermometer.展开更多
文摘A kind of fluorescence fiber-optic thermometer is devised based on the solid-state ruby fluorescence material. The characteristics of fluorescence material absorption and emission are analyzed, and the fiber-optic temperature measurement probe in ruby is developed. This system is particularly adaptable to the temperature measurement in the range of 20℃ to 600℃. During the experiment, this method is proved to be useful to temperature measurement with high resolution and precision.
文摘A sapphire fibre thermal probe with Cr^3+ ion-doped end is developed by using the laser heated pedestal growth method. The fluorescence thermal probe offers advantages of compact structure, high performance and ability to withstand high temperature in a detection range from room temperature to 450℃. Based on the fast Fourier transform (FFT), the fluorescence lifetime is obtained from the tangent function of phase angle of the non-zeroth terms in the FFT result. This method has advantages such as quick calculation, high accuracy and immunity to the background noise. This FFT method is compared with other traditional fitting methods, indicating that the standard deviation of the FFT method is about half of that of the Prony method and about 1/6 of that of the log-fit method. And the FFT method is immune to the background noise involved in a signal. So, the FFT method is an excellent way of processing signals. In addition, a phase-lock amplifier can effectively suppress the noise.
基金the National Natural Science Foundation of China(Nos.21975065,U21A20277,21825106,and 22201065).
文摘In this study,an alkynyl-modified aromatic dicarboxylic acid bifunctional ligand was selected to construct lanthanide compound{[Eu_(4)(ebdc)_(6)(4,4-bpy)_(0.5)(H_(2)O)_(4.5)]·(C_(2)H_(5)OH)_(1.25)(H_(2)O)}_(n)(Eu-MOF,H_(2)ebdc=5-ethynyl-isophthalic acid,4,4-bpy=4,4-bipyridine,MOF=metal-organic framework),of which the uncoordinated alkynyl group would be used to anchor silver nanoclusters(Ag NCs).The Eu-MOF exhibits double emission peaks,located at 492 and 611 nm,respectively,in which the high-energy blue emission is associated with alkynyl-modified ligand while the low-energy red emission belongs to characteristic emission of Eu3+,indicating that ligands can effectively sensitize Eu3+luminescence.The intensity ratio of the dual emission fluorescence peaks of Eu-MOF displays a good linear relationship with temperature,which realizes the detection function in the low temperature region of 75–275 K,the thermal sensitivity reaches 1.5398%·K^(−1).After anchoring the Ag NCs,the high-energy blue emission is significantly quenched,indicating that the Ag NCs are indeed confined into the framework and interact with the alkynyl group,and thus change the overall electronic distribution.This is the first case of anchoring Ag NCs by a luminescent Eu-MOF and studying nanocluster loading by using spectroscopic properties.In addition,the Ag NCs@Eu-MOF also shows a good catalytic activity for cycloaddition reaction from CO_(2)and epoxides.This study not only provides ideas for exploring the changes in optical properties of luminescent MOFs and Ag NCs caused by confinement effect,but also expands their potential applications in various fields.
基金Project supported by the National Natural Science Foundation of China(21871121)Science and Technological Plan of Gansu Province(20YF3GA012)the 111 Project(B20027)。
文摘Real-time monitoring and accurate treatment are of great significance for reducing the side effects during the cancer therapy.In this work,we rationally prepared a smart nanoprobe based on core-shell terbium metal-organic gramework(MOF)with highly effective photothermal conversion capacity and drug release efficiency under near-infrared light irradiation for real-time fluorescence imaging-guided multimodal therapy.The nanoprobe can achieve prominent photothermal therapy and controllable drug release,act as a fluorescence thermometer,and also real-time feedback of temperature is expected to be achieved.At the same time,the two-photon ligand design significantly improves the tissue penetration ability of the nanoprobe.Our work is expected to provide a reference for precise treatment and real-time monitoring of tumors and at the same time provide new ideas for the formulation of individualized treatment plans.
基金financially supported by the Science and Technology Planning Project of Guangdong Province(No.2014A010105009)the National Key Basic Research Program of China(No.2013CB834702)+1 种基金the National Natural Science Foundation of China(Nos.21574044 and 21474031)the Fundamental Research Funds for the Central Universities(No.2015ZY013)
文摘A simple and effective polymer fluorescent thermosensitive system was successfully developed based on the synergistic effect of excimer/monomer interconversion of pyrene derivatives and electrostatic interaction between polyelectrolyte and charged fluorophore. As for the system, the excimer-monomer conversion, thermosensitive behavior and thermo-responsive reversibility were investigated experimentally. Temperature variation and temperature-distribution induced fluorescence changes can be observed directly by naked eyes. Thus, this polymer system holds promise for serving as a fluorescent thermometer.