Real-time fluorescent quantitative PCR (RQ-PCR) is a detection method by adding fluorescent dye or fluorescent probe into the PCR reaction system, using fluorescent signal accumulation to monitor amplification react...Real-time fluorescent quantitative PCR (RQ-PCR) is a detection method by adding fluorescent dye or fluorescent probe into the PCR reaction system, using fluorescent signal accumulation to monitor amplification reactions of PCR reaction process, and finally the unknown template can be quantitatively analyzed through the standard curve. So the detection level of PCR has improved from the qualitative to the quantitative. In order to provide a theoretical reference for further application, the principle, classification, advantages and disadvantages of RQ-PCR were intro- duced, and its application and progress in plants in recent years were reviewed.展开更多
The species distinctive PCR primer of Lactobacillus acidophilus ( L. acidophilus) was designed according to 16S rRNA gene sequences of conunon Lac- tobacillus species in fermented material. Bacterial genome DNA of s...The species distinctive PCR primer of Lactobacillus acidophilus ( L. acidophilus) was designed according to 16S rRNA gene sequences of conunon Lac- tobacillus species in fermented material. Bacterial genome DNA of separated L. acidophilus in fermented sample was taken as template, and L. acidophilus in fer- mented material was conducted the quantitative determination by real-time quantitative PCR (RT-PCR). Analysis on RT-PCR results shown that contents of L. aci- dophilus in the test sample reached 1.5 billion CFU / g. Test results shown that contents of L. acidophilus in fermented material could be detected accurately by the established RT-PCR method in the test. indicating that the established RT-PCR method could be aookued to the detection of L. acidophilus in fermented material.展开更多
Real-Lime fluorescent quantitative PCR is a method for quantitative analysis of gene expression developed in recent years, which has been widely used in various fields such as basic scientific research, clinical diagn...Real-Lime fluorescent quantitative PCR is a method for quantitative analysis of gene expression developed in recent years, which has been widely used in various fields such as basic scientific research, clinical diagnosis, disease study, drug research and development since its appearance. It starts relatively late in study on plants, but has already been used for analysis of gene expression in plants and gene identification of exogenous genes. The principles or advantages and dis- advantages of real-time fluorescent quantitative PCR, or its potential problems and condition optimizations in tests were introduced in this study, and then the appli- cation and prospect of real-time fluorescent quantitative PCR in study on plants were also been discussed.展开更多
A reliable and sensitive competitive real-time fluorescent quantitative immuno-PCR (RTFQ-IPCR) assay using a molecular beacon was developed for the determination of trace fluoranthene (FL) in the environment.Under...A reliable and sensitive competitive real-time fluorescent quantitative immuno-PCR (RTFQ-IPCR) assay using a molecular beacon was developed for the determination of trace fluoranthene (FL) in the environment.Under optimized assay conditions,FL can be determined in the concentration range from 1 fg/mL to 100 ng/mL,with y=0.194x + 7.859,and a correlation coefficient of 0.967 was identified,with a detection limit of 0.6 fg/mL.Environmental water samples were successfully analyzed,recovery was between 90% and 116%,with intra-day relative standard deviation (RSD) of 6.7%-12.8% and inter-day RSD of 8.4%-15.2%.The results obtained from RTFQ-IPCR were confirmed by ELISA,showing good accuracy and suitability to analyze FL in field samples.As a highly sensitive method,the molecular beacon-based RTFQ-IPCR is acceptable and promising for providing reliable test results to make environmental decisions.展开更多
[ Objective] To develop a real-time fluorescent PCR assay for rapid detection of Haempohlius parasuis (HPS). [ Method] According to the conservative sequences of 16 S rRNA genes of HPS published in GenBank, a pair o...[ Objective] To develop a real-time fluorescent PCR assay for rapid detection of Haempohlius parasuis (HPS). [ Method] According to the conservative sequences of 16 S rRNA genes of HPS published in GenBank, a pair of specific primers was designed. The real-time fluorescent PCR was developed by optimizing primer concentration and annealing temperature. And its specificity and reproducibility were evaluated. Ten HPS- suspected samples were detected by the developed method. [ Result] The lowest detection limit of the developed real-time fluorescent PCR was 50 copies/μl. This method had good reproducibility, and its coefficient of variation was lower than 2%. Only HPS rather than Streptococcus suis type 2, Staphylococcus aureus, E. coli DH5 alpha, and swine Salmonella typhi could be detected by the developed real-time fluorescent PCR. The HPS-pesitive samples detected by this method were also positive when they were detected by isolation of bacteria or conventional PCR. [ Conclusion] The developed real-time fluorescent PCR is rapid, sensitive, specific and highly reproducible; thus, it can be used for rapid detection of HPS.展开更多
Edwardsiella tarda is one of the most important emerging pathogens in tile global aquaculture industries. As such, an accurate diagnosis and quantitative analytical methods are urgently needed for this bacterium. In t...Edwardsiella tarda is one of the most important emerging pathogens in tile global aquaculture industries. As such, an accurate diagnosis and quantitative analytical methods are urgently needed for this bacterium. In this study, primers and a TaqMan probe specific to the conservative sequences of the 16S rRNA gene of E. tarda were designed. The concentration of primers and TaqMan probe were optimized to 200 nmol/L and 120 nmol/L, respectively. The detection sensitivity of the FQ- PCR assay was determined to be as low as five copies of the target sequence per reaction using the pGEM-16S rDNA recombinant plasmid as a template, which was 100 times more sensitive than conventional PCR. A standard curve by plotting the threshold cycle values (y) against the common logarithmic copies (logl0n~ as x; n~ is copy number) of pGEM-16S rDNA was generated. The results of intra- and inter-assay variability tests demonstrate that the established FQ-PCR method was highly reproducible. The assay was specific for E. tarda as it showed that there was no cross-reactivity to eight additional bacterial pathogen strains in aquaculture. Thus, the FQ-PCR assay has the potential for diagnostic purposes and for other applications, especially for the rapid detection and quantification of low-grade E. tarda infections.展开更多
In order to improve the standardized technical systems of quantitative analyses for genetically modified organisms (GMOs) and products, ensure bio-safety and reduce ecological risk in China, a real-time fluorescent ...In order to improve the standardized technical systems of quantitative analyses for genetically modified organisms (GMOs) and products, ensure bio-safety and reduce ecological risk in China, a real-time fluorescent quantitative PCR assay was established for detection of genetically modified maize line MON88017. The established method was evaluated based on the specificity, sensitivity, accuracy and measurement uncertainty. The results showed that the established method had strong specificity in detection of genetically modified maize line MON88017. 1.50% MON88017 sample was detected with 29 replica- tions. The average measured value ( 1. 541% ) was close to the actual value ( 1.50% ) and the relative deviation was 2.70%. The variation coefficient of the measured value was 0.110 g ; the recovery was 100.00% and the measurement uncertainty was 0. 096. The limit of detection for genetically modified maize line MON88017 with the established method was 5 copies at the 97.5% confidence level. Thus, the real-time fluorescent quantitative PCR assay established in this study exhibited high specificity, accuracy and sensitivity, which could provide technical support for the safety supervision of genetically modified organ- isms and products in China.展开更多
Peanut,sesame and other raw materials of food are allergens for special populations.In this study,specific primers and TaqMan probes labeled by different fluorescences were designed targeting Ara h 2 gene of peanut an...Peanut,sesame and other raw materials of food are allergens for special populations.In this study,specific primers and TaqMan probes labeled by different fluorescences were designed targeting Ara h 2 gene of peanut and Ses i 1 gene of sesame.After the optimization of reaction conditions,a real-time fluorescent PCR method was established for simultaneous detection of allergenic ingredients of peanut and sesame in food.Genomic DNA samples of peanut,sesame,rice,wheat,barley,soybean,celery,maize,potato,tomato,walnut,groundnut in shell,cashew nut,sunflower seed,almond,apple,pear and strawberry,pork,beef,mutton and fish were used as templates for PCR amplification with deionized water as negative control template.Results indicated that the established real-time fluorescent PCR method could specifically identify allergenic ingredients of peanut and sesame simultaneously.Sensitivity test showed that the minimum detection limit of this method was 0.01%.Therefore,the established real-time fluorescent PCR method is a specific,sensitive and effective assay for simultaneously detecting allergenic ingredients of peanut and sesame in food.展开更多
[ Objective ] To establish a real-time fluorescent quantitative polymerase chain reaction (PCR) method with SYBR Green I for the detection of porcine circovirus type 2 (PCV2). [Methods] Specific primers were desig...[ Objective ] To establish a real-time fluorescent quantitative polymerase chain reaction (PCR) method with SYBR Green I for the detection of porcine circovirus type 2 (PCV2). [Methods] Specific primers were designed to amplify the conserved gene segments of PCV2 with a size of 177 bp by PCR. The ampli- fied gene was cloned into the vector of pMD 18-T and transformed into DHSct to screen positive clones. After being extracted and purified, the recombinant plasraids pMD 18-T-177 were taken as the standard DNA templates to establish the fluorescence quantitative PCR method for the detection of PCV2, and the PCR re- action conditions were optimized. [ Results] Ct value of the established PCR method showed a good linear relationship with the standard DNA templates within a viral load of 3.21 × 100 -4.16 × 108 copies/μL , the correlation coefficient was O. 998 8 and the slope was - 3.286. The method did not show any cress-reactions with the genomes of PRRSV, PCV1, CSFV, PRV, PPV and Escherichia coli. Sensitivity of this method was proved to be 3.21 × 10 copies/μL, which was 1 000 times higher as conventional PCR method. Variation coefficients of the repeated trims among same batch or different batches were both less than 3.00%. Positive rate of clinical samples detected by the established PCR method was 58.94%, which was significantly higher than the detection rate by conventional PCR. [ Conclusions ] A reM-time fluorescent quantitative PCR method with SYBR Green I for the detection of PCV2 was established, which was better for conducting the quan- titative analysis and the early diagnosis of PCV2 infection.展开更多
Objective: To study the role of macrophage inflammatory protein (MIP)-2γ in myocarditis pathogenesis in BALB/c mice. Methods: The relationship between the progression of Coxsarckie virus B3(CVB3) viral myocarditis an...Objective: To study the role of macrophage inflammatory protein (MIP)-2γ in myocarditis pathogenesis in BALB/c mice. Methods: The relationship between the progression of Coxsarckie virus B3(CVB3) viral myocarditis and experimental autoimmune myocarditis and MIP-2γ mRNA expression in mouse was studied by TaqMan real-time fluorescent quantitative RT-PCR. Results: MIP-2γ mRNA expression rose on 3 to 5 d after CVB3 infection, reached peak on 7 d, and returned to normal level until 14 d, which corresponded well with the disease course. The MIP-2γ mRNA expression level rose significantly on the day 18 d after immunization with porcine cardiac myosin, which was consistent with pathological examination. Conclusion: MIP-2γ may be involved in the pathogenesis of myocarditis.展开更多
Newcastle disease( ND) is one of the most serious infectious diseases that infect the poultry industry.There is only one serotype of Newcastle disease virus( NDV),but NDVs can be divided into two distinct classes( cla...Newcastle disease( ND) is one of the most serious infectious diseases that infect the poultry industry.There is only one serotype of Newcastle disease virus( NDV),but NDVs can be divided into two distinct classes( class Ⅰ,and class Ⅱ) according to their genetic relationship.To develop a method for rapid quantitative detection of class Ⅰ NDV,a pair of primers and a TaqM an probe were designed and synthesized according to the conservative sequence of NP gene of class Ⅰ NDV.The positive recombinant plasmid harboring NP gene of JS-18-05 isolate was used as a positive template to establish the standard curve.A real-time fluorescent quantitative RT-PCR method was established for rapid detection of class Ⅰ NDV with strong specificity,high sensitivity and good repeatability.The established method exhibited a good linear relationship within the concentration of 102 to 108 copies of NDV,by which 1 μl of 10 copy of NDV nucleic acid could be detected in the initial template.Compared with conventional virus isolation methods,the established method had similar sensitivity and led to the same results in detecting33 class Ⅰ,class Ⅱ NDV isolates.The study provided the basis for rapid quantitative detection of class Ⅰ NDVs and further clarification of their pathogenicity and pathogenic mechanism in poultry.展开更多
Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resi...Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.展开更多
Summary:The novel coronavirus SARS-CoV-2 caused an outbreak of pneumonia in Wuhan,Hubei province of China in January 2020.This study aims to investigate the effects of different temperature and time durations of virus...Summary:The novel coronavirus SARS-CoV-2 caused an outbreak of pneumonia in Wuhan,Hubei province of China in January 2020.This study aims to investigate the effects of different temperature and time durations of virus inactivation on the results of PCR testing for SARS-CoV-2.Twelve patients at the Renmin Hospital of Wuhan University suspected of being infected with SARS-CoV-2 were selected on February 13,2020 and throat swabs were taken.The swabs were stored at room tempcrature(20-25℃),then divided into aliquots and subjected to different temperature for different periods in order to inactivate the viruses(56℃for 30,45,60 min;65,70,80℃for 10,15,20 min).Control aliquots were stored at room temperature for 60 min.Then all aliquots were tested in a real-time fluorescence PCR using primers against SARS-CoV-2.Regardless of inactivation temperature and time,7 of 12 cases(58.3%)tested were positive for SARS-CoV-2 by PCR,and cycle threshold values were similar.These results suggest that virus inactivation parameters exert minimal infuence on PCR test results.Inactivation at 65℃for 10 min may be sufficient to ensure safe,reliable testing.展开更多
Burkholderia glumae causing seedling rot and grain rot of rice was listed as a plant quarantine disease of China in 2007. It's quite necessary to set up effective detection methods for the pathogen to manage further ...Burkholderia glumae causing seedling rot and grain rot of rice was listed as a plant quarantine disease of China in 2007. It's quite necessary to set up effective detection methods for the pathogen to manage further dispersal of this disease. The present study combined the real-time PCR method with classical PCR to increase the detecting efficiency, and to develop an accurate, rapid and sensitive method to detect the pathogen in the seed quarantine for effective management of the disease. The results showed that all the tested strains of B. glumae produced about 139 bp specific fragments by the real-time PCR and the general PCR methods, while others showed negative PCR result. The bacteria could be detected at the concentrations of 1×10^4 CFU/mL by general PCR method and at the concentrations below 100 CFU/mL by real-time fluorescence PCR method. B. glumae could be detected when the inoculated and healthy seeds were mixed with a proportion of 1:100.展开更多
This study was to develop the real-time fluorescence quantitative PCR technique for detecting the ratoon stunting disease (RSD) in virus-free seedcane seedlings. Healthy tissue culture seedlings were obtained from s...This study was to develop the real-time fluorescence quantitative PCR technique for detecting the ratoon stunting disease (RSD) in virus-free seedcane seedlings. Healthy tissue culture seedlings were obtained from six plants of sugarcane ROC22, which had been confirmed RSD-positive by detecting the sugarcane juice, by employing the sugarcane seedlings production protocol. Real-time fluorescence quantitative PCR was used to detect RSD pathogens in tissue culture sam- pies. The results showed that target fragment of RSD pathogens was not found in all 10 samples in real-time fluorescence quantitative PCR, with the Ct values of 37 - 39. The healthy tissue culture sugarcane seedlings do not carry RSD pathogens, indicating that adopting healthy seedcane seedlings production technique could thoroughly get rid of RSD pathogens.展开更多
Objective: Multidrug resistance(MDR) is one of the most important reasons for treatment failure and recurrence of acute leukemia. Its manifestations are different in children with acute lymphoblastic leukemia(ALL...Objective: Multidrug resistance(MDR) is one of the most important reasons for treatment failure and recurrence of acute leukemia. Its manifestations are different in children with acute lymphoblastic leukemia(ALL) which may be due to different detection methods. This study was to detect the expression of MDR1 mRNA in bone marrow cells of children with ALL by real-time fluorescence- quantitative reverse transcription polymerase-chain reaction(FQ-RT-PCR), and combine minimal residual desease(MRD) detection by flow cytometry(FCM) and to study their relationship with treatment response and prognosis of ALL. Methods:The MDR1 mRNA levels in bone marrow cells from 67 children with ALL[28 had newly diagnosed disease, 27 had achieved complete remission(CR), 12 recurrent] and 22 children without leukemia were detected by FQ-RT-PCR. MRD was detected by FCM. The patients were observed for 9-101 months, with a median of 64 months. Results:Standard curves of human MDR1 and GAPDH genes were constructed successfully. MDR1 mRNA was detected in all children with a positive rate of 100%. The mRNA level of MDR1 was similar among the newly diagnosed ALL group, CR group, and control group(P 〉 0.05), but significantly higher in the recurrence group than that in newly diagnosed disease group and control group(0.50 ± 0.55 vs. 0.09 ± 0.26 and 0.12 ± 0.23, P〈 0.05). 54 ALL patients were followed up, and it was found that MDR1 mRNA level was significantly higher in ALL patients within 3 years duration than that of ALL patients with 3-6 years and over 6 years duration(0.63 ± 0.56 vs. 0.11 ± 0.12 and 0.04 ± 0.06, P〈 0.01). For the 28 children with newly diagnosed disease, the MDR1 mRNA level was similar between WBC 〉 50 ~ 109 group and WBC〈50 × 10^9 group(P〉 0.05). In the 33 CR patients, the MDR1 mRNA level was significantly higher in MRD〉10a group than that in MRD〈10a group(0.39 ± 0.47 vs. 0.03 ± 0.03, P 〈 0.05). Conclusion:The sensitivity and specificity of FQ-RT-PCR in detecting MDR1 mRNA in bone marrowy cells of children with ALL patients are high. MDR1 mRNA is expressed in children with and without leukemia. MDR1 mRNA is highly expressed in the CR ALL patients with high MRD, recurrence and short duration(within 3 years). Monitoring MRD and the MDR1 mRNA level might be helpful for individual treatment.展开更多
基金Supported by National Natural Science Foundation of China(31260406)Natural Science Fund Project of Inner Mongolia(2012MS0502)~~
文摘Real-time fluorescent quantitative PCR (RQ-PCR) is a detection method by adding fluorescent dye or fluorescent probe into the PCR reaction system, using fluorescent signal accumulation to monitor amplification reactions of PCR reaction process, and finally the unknown template can be quantitatively analyzed through the standard curve. So the detection level of PCR has improved from the qualitative to the quantitative. In order to provide a theoretical reference for further application, the principle, classification, advantages and disadvantages of RQ-PCR were intro- duced, and its application and progress in plants in recent years were reviewed.
文摘The species distinctive PCR primer of Lactobacillus acidophilus ( L. acidophilus) was designed according to 16S rRNA gene sequences of conunon Lac- tobacillus species in fermented material. Bacterial genome DNA of separated L. acidophilus in fermented sample was taken as template, and L. acidophilus in fer- mented material was conducted the quantitative determination by real-time quantitative PCR (RT-PCR). Analysis on RT-PCR results shown that contents of L. aci- dophilus in the test sample reached 1.5 billion CFU / g. Test results shown that contents of L. acidophilus in fermented material could be detected accurately by the established RT-PCR method in the test. indicating that the established RT-PCR method could be aookued to the detection of L. acidophilus in fermented material.
基金Supported by National Natural Science Foundation of China ( 30800885,30871726)
文摘Real-Lime fluorescent quantitative PCR is a method for quantitative analysis of gene expression developed in recent years, which has been widely used in various fields such as basic scientific research, clinical diagnosis, disease study, drug research and development since its appearance. It starts relatively late in study on plants, but has already been used for analysis of gene expression in plants and gene identification of exogenous genes. The principles or advantages and dis- advantages of real-time fluorescent quantitative PCR, or its potential problems and condition optimizations in tests were introduced in this study, and then the appli- cation and prospect of real-time fluorescent quantitative PCR in study on plants were also been discussed.
基金support by the Scienceand Technology Commission of Shanghai Municipality in China (Key Project of Fundamental Research) (No.09JC1407600)the Science and Technology Commission of Shanghai Municipality in China (Key Project of theScience and Technology Research) (No. 09231202805)the Shanghai Leading Academic Discipline Project(No. B604)
文摘A reliable and sensitive competitive real-time fluorescent quantitative immuno-PCR (RTFQ-IPCR) assay using a molecular beacon was developed for the determination of trace fluoranthene (FL) in the environment.Under optimized assay conditions,FL can be determined in the concentration range from 1 fg/mL to 100 ng/mL,with y=0.194x + 7.859,and a correlation coefficient of 0.967 was identified,with a detection limit of 0.6 fg/mL.Environmental water samples were successfully analyzed,recovery was between 90% and 116%,with intra-day relative standard deviation (RSD) of 6.7%-12.8% and inter-day RSD of 8.4%-15.2%.The results obtained from RTFQ-IPCR were confirmed by ELISA,showing good accuracy and suitability to analyze FL in field samples.As a highly sensitive method,the molecular beacon-based RTFQ-IPCR is acceptable and promising for providing reliable test results to make environmental decisions.
基金funded by the Key Technologies R&D Program of Guangxi of China (0993009-1)
文摘[ Objective] To develop a real-time fluorescent PCR assay for rapid detection of Haempohlius parasuis (HPS). [ Method] According to the conservative sequences of 16 S rRNA genes of HPS published in GenBank, a pair of specific primers was designed. The real-time fluorescent PCR was developed by optimizing primer concentration and annealing temperature. And its specificity and reproducibility were evaluated. Ten HPS- suspected samples were detected by the developed method. [ Result] The lowest detection limit of the developed real-time fluorescent PCR was 50 copies/μl. This method had good reproducibility, and its coefficient of variation was lower than 2%. Only HPS rather than Streptococcus suis type 2, Staphylococcus aureus, E. coli DH5 alpha, and swine Salmonella typhi could be detected by the developed real-time fluorescent PCR. The HPS-pesitive samples detected by this method were also positive when they were detected by isolation of bacteria or conventional PCR. [ Conclusion] The developed real-time fluorescent PCR is rapid, sensitive, specific and highly reproducible; thus, it can be used for rapid detection of HPS.
基金The Special Fund for Agro-scientific Research in the Public Interest under contract No.201103034Construction Special Fund of Modern Agriculture and Industrial Technology Research System under contract No.CARS-47
文摘Edwardsiella tarda is one of the most important emerging pathogens in tile global aquaculture industries. As such, an accurate diagnosis and quantitative analytical methods are urgently needed for this bacterium. In this study, primers and a TaqMan probe specific to the conservative sequences of the 16S rRNA gene of E. tarda were designed. The concentration of primers and TaqMan probe were optimized to 200 nmol/L and 120 nmol/L, respectively. The detection sensitivity of the FQ- PCR assay was determined to be as low as five copies of the target sequence per reaction using the pGEM-16S rDNA recombinant plasmid as a template, which was 100 times more sensitive than conventional PCR. A standard curve by plotting the threshold cycle values (y) against the common logarithmic copies (logl0n~ as x; n~ is copy number) of pGEM-16S rDNA was generated. The results of intra- and inter-assay variability tests demonstrate that the established FQ-PCR method was highly reproducible. The assay was specific for E. tarda as it showed that there was no cross-reactivity to eight additional bacterial pathogen strains in aquaculture. Thus, the FQ-PCR assay has the potential for diagnostic purposes and for other applications, especially for the rapid detection and quantification of low-grade E. tarda infections.
基金Supported by Project of Standardization Technical System from the Administration of Quality and Technology Supervision of Sichuan Province(ZYBZ2013-39)
文摘In order to improve the standardized technical systems of quantitative analyses for genetically modified organisms (GMOs) and products, ensure bio-safety and reduce ecological risk in China, a real-time fluorescent quantitative PCR assay was established for detection of genetically modified maize line MON88017. The established method was evaluated based on the specificity, sensitivity, accuracy and measurement uncertainty. The results showed that the established method had strong specificity in detection of genetically modified maize line MON88017. 1.50% MON88017 sample was detected with 29 replica- tions. The average measured value ( 1. 541% ) was close to the actual value ( 1.50% ) and the relative deviation was 2.70%. The variation coefficient of the measured value was 0.110 g ; the recovery was 100.00% and the measurement uncertainty was 0. 096. The limit of detection for genetically modified maize line MON88017 with the established method was 5 copies at the 97.5% confidence level. Thus, the real-time fluorescent quantitative PCR assay established in this study exhibited high specificity, accuracy and sensitivity, which could provide technical support for the safety supervision of genetically modified organ- isms and products in China.
基金Supported by Scientific Research Project of Anhui Bureau of Quality and Technical Supervision(13zj370033)
文摘Peanut,sesame and other raw materials of food are allergens for special populations.In this study,specific primers and TaqMan probes labeled by different fluorescences were designed targeting Ara h 2 gene of peanut and Ses i 1 gene of sesame.After the optimization of reaction conditions,a real-time fluorescent PCR method was established for simultaneous detection of allergenic ingredients of peanut and sesame in food.Genomic DNA samples of peanut,sesame,rice,wheat,barley,soybean,celery,maize,potato,tomato,walnut,groundnut in shell,cashew nut,sunflower seed,almond,apple,pear and strawberry,pork,beef,mutton and fish were used as templates for PCR amplification with deionized water as negative control template.Results indicated that the established real-time fluorescent PCR method could specifically identify allergenic ingredients of peanut and sesame simultaneously.Sensitivity test showed that the minimum detection limit of this method was 0.01%.Therefore,the established real-time fluorescent PCR method is a specific,sensitive and effective assay for simultaneously detecting allergenic ingredients of peanut and sesame in food.
基金Supported by Shandong Province Natural Science Fund Project
文摘[ Objective ] To establish a real-time fluorescent quantitative polymerase chain reaction (PCR) method with SYBR Green I for the detection of porcine circovirus type 2 (PCV2). [Methods] Specific primers were designed to amplify the conserved gene segments of PCV2 with a size of 177 bp by PCR. The ampli- fied gene was cloned into the vector of pMD 18-T and transformed into DHSct to screen positive clones. After being extracted and purified, the recombinant plasraids pMD 18-T-177 were taken as the standard DNA templates to establish the fluorescence quantitative PCR method for the detection of PCV2, and the PCR re- action conditions were optimized. [ Results] Ct value of the established PCR method showed a good linear relationship with the standard DNA templates within a viral load of 3.21 × 100 -4.16 × 108 copies/μL , the correlation coefficient was O. 998 8 and the slope was - 3.286. The method did not show any cress-reactions with the genomes of PRRSV, PCV1, CSFV, PRV, PPV and Escherichia coli. Sensitivity of this method was proved to be 3.21 × 10 copies/μL, which was 1 000 times higher as conventional PCR method. Variation coefficients of the repeated trims among same batch or different batches were both less than 3.00%. Positive rate of clinical samples detected by the established PCR method was 58.94%, which was significantly higher than the detection rate by conventional PCR. [ Conclusions ] A reM-time fluorescent quantitative PCR method with SYBR Green I for the detection of PCV2 was established, which was better for conducting the quan- titative analysis and the early diagnosis of PCV2 infection.
文摘Objective: To study the role of macrophage inflammatory protein (MIP)-2γ in myocarditis pathogenesis in BALB/c mice. Methods: The relationship between the progression of Coxsarckie virus B3(CVB3) viral myocarditis and experimental autoimmune myocarditis and MIP-2γ mRNA expression in mouse was studied by TaqMan real-time fluorescent quantitative RT-PCR. Results: MIP-2γ mRNA expression rose on 3 to 5 d after CVB3 infection, reached peak on 7 d, and returned to normal level until 14 d, which corresponded well with the disease course. The MIP-2γ mRNA expression level rose significantly on the day 18 d after immunization with porcine cardiac myosin, which was consistent with pathological examination. Conclusion: MIP-2γ may be involved in the pathogenesis of myocarditis.
基金Supported by National Natural Science Foundation of China(30630048)National Science and Technology Support Program(2006BAD06A03)
文摘Newcastle disease( ND) is one of the most serious infectious diseases that infect the poultry industry.There is only one serotype of Newcastle disease virus( NDV),but NDVs can be divided into two distinct classes( class Ⅰ,and class Ⅱ) according to their genetic relationship.To develop a method for rapid quantitative detection of class Ⅰ NDV,a pair of primers and a TaqM an probe were designed and synthesized according to the conservative sequence of NP gene of class Ⅰ NDV.The positive recombinant plasmid harboring NP gene of JS-18-05 isolate was used as a positive template to establish the standard curve.A real-time fluorescent quantitative RT-PCR method was established for rapid detection of class Ⅰ NDV with strong specificity,high sensitivity and good repeatability.The established method exhibited a good linear relationship within the concentration of 102 to 108 copies of NDV,by which 1 μl of 10 copy of NDV nucleic acid could be detected in the initial template.Compared with conventional virus isolation methods,the established method had similar sensitivity and led to the same results in detecting33 class Ⅰ,class Ⅱ NDV isolates.The study provided the basis for rapid quantitative detection of class Ⅰ NDVs and further clarification of their pathogenicity and pathogenic mechanism in poultry.
文摘Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.
基金This work was supported by grants from the Special Science and Technology Cooperation Project of Ningxia Hui Autonomous Region Key R&D Program(No.2018BFG02008)the National Science and Technology Key Projects on"Major Infectious Diseases such as HIV/AIDS,Viral Hepatitis Prevention and Treatment"(No.2017ZX10103005).
文摘Summary:The novel coronavirus SARS-CoV-2 caused an outbreak of pneumonia in Wuhan,Hubei province of China in January 2020.This study aims to investigate the effects of different temperature and time durations of virus inactivation on the results of PCR testing for SARS-CoV-2.Twelve patients at the Renmin Hospital of Wuhan University suspected of being infected with SARS-CoV-2 were selected on February 13,2020 and throat swabs were taken.The swabs were stored at room tempcrature(20-25℃),then divided into aliquots and subjected to different temperature for different periods in order to inactivate the viruses(56℃for 30,45,60 min;65,70,80℃for 10,15,20 min).Control aliquots were stored at room temperature for 60 min.Then all aliquots were tested in a real-time fluorescence PCR using primers against SARS-CoV-2.Regardless of inactivation temperature and time,7 of 12 cases(58.3%)tested were positive for SARS-CoV-2 by PCR,and cycle threshold values were similar.These results suggest that virus inactivation parameters exert minimal infuence on PCR test results.Inactivation at 65℃for 10 min may be sufficient to ensure safe,reliable testing.
基金supported by National Natural Science Foundation of China(Grant No.30671397 and No.30871655)the Public Beneficial Research Project of Agricultural Ministry,China(Grant No.nyhyzx07-056)
文摘Burkholderia glumae causing seedling rot and grain rot of rice was listed as a plant quarantine disease of China in 2007. It's quite necessary to set up effective detection methods for the pathogen to manage further dispersal of this disease. The present study combined the real-time PCR method with classical PCR to increase the detecting efficiency, and to develop an accurate, rapid and sensitive method to detect the pathogen in the seed quarantine for effective management of the disease. The results showed that all the tested strains of B. glumae produced about 139 bp specific fragments by the real-time PCR and the general PCR methods, while others showed negative PCR result. The bacteria could be detected at the concentrations of 1×10^4 CFU/mL by general PCR method and at the concentrations below 100 CFU/mL by real-time fluorescence PCR method. B. glumae could be detected when the inoculated and healthy seeds were mixed with a proportion of 1:100.
基金Supported by Special Funds for Basic Scientific Research of Guangxi Sugarcane Research Institute(G2009006,G2010006,G2009015)Sci-tech Research and Development Program of Guangxi Academy of Agricultural Sciences(200805)
文摘This study was to develop the real-time fluorescence quantitative PCR technique for detecting the ratoon stunting disease (RSD) in virus-free seedcane seedlings. Healthy tissue culture seedlings were obtained from six plants of sugarcane ROC22, which had been confirmed RSD-positive by detecting the sugarcane juice, by employing the sugarcane seedlings production protocol. Real-time fluorescence quantitative PCR was used to detect RSD pathogens in tissue culture sam- pies. The results showed that target fragment of RSD pathogens was not found in all 10 samples in real-time fluorescence quantitative PCR, with the Ct values of 37 - 39. The healthy tissue culture sugarcane seedlings do not carry RSD pathogens, indicating that adopting healthy seedcane seedlings production technique could thoroughly get rid of RSD pathogens.
基金This work was supported by Science Project from Science and Tech- nology Department of HuBei province(2006AA301B56-3)
文摘Objective: Multidrug resistance(MDR) is one of the most important reasons for treatment failure and recurrence of acute leukemia. Its manifestations are different in children with acute lymphoblastic leukemia(ALL) which may be due to different detection methods. This study was to detect the expression of MDR1 mRNA in bone marrow cells of children with ALL by real-time fluorescence- quantitative reverse transcription polymerase-chain reaction(FQ-RT-PCR), and combine minimal residual desease(MRD) detection by flow cytometry(FCM) and to study their relationship with treatment response and prognosis of ALL. Methods:The MDR1 mRNA levels in bone marrow cells from 67 children with ALL[28 had newly diagnosed disease, 27 had achieved complete remission(CR), 12 recurrent] and 22 children without leukemia were detected by FQ-RT-PCR. MRD was detected by FCM. The patients were observed for 9-101 months, with a median of 64 months. Results:Standard curves of human MDR1 and GAPDH genes were constructed successfully. MDR1 mRNA was detected in all children with a positive rate of 100%. The mRNA level of MDR1 was similar among the newly diagnosed ALL group, CR group, and control group(P 〉 0.05), but significantly higher in the recurrence group than that in newly diagnosed disease group and control group(0.50 ± 0.55 vs. 0.09 ± 0.26 and 0.12 ± 0.23, P〈 0.05). 54 ALL patients were followed up, and it was found that MDR1 mRNA level was significantly higher in ALL patients within 3 years duration than that of ALL patients with 3-6 years and over 6 years duration(0.63 ± 0.56 vs. 0.11 ± 0.12 and 0.04 ± 0.06, P〈 0.01). For the 28 children with newly diagnosed disease, the MDR1 mRNA level was similar between WBC 〉 50 ~ 109 group and WBC〈50 × 10^9 group(P〉 0.05). In the 33 CR patients, the MDR1 mRNA level was significantly higher in MRD〉10a group than that in MRD〈10a group(0.39 ± 0.47 vs. 0.03 ± 0.03, P 〈 0.05). Conclusion:The sensitivity and specificity of FQ-RT-PCR in detecting MDR1 mRNA in bone marrowy cells of children with ALL patients are high. MDR1 mRNA is expressed in children with and without leukemia. MDR1 mRNA is highly expressed in the CR ALL patients with high MRD, recurrence and short duration(within 3 years). Monitoring MRD and the MDR1 mRNA level might be helpful for individual treatment.