We studied the influence of seed priming with beta-amino butyric acid(BABA) on the growth, physiological and biochemical parameters of seedlings with varied abiotic stress tolerance, which were raised and grown unde...We studied the influence of seed priming with beta-amino butyric acid(BABA) on the growth, physiological and biochemical parameters of seedlings with varied abiotic stress tolerance, which were raised and grown under unstressed and stressed(NaCl/PEG-6000) conditions. Under stressed conditions, the growth of rice seedlings was less when compared to control plants. After BABA priming, the seedling growth increased both under unstressed and stressed conditions as compared to the respective controls. BABA priming of rice seeds caused increase in the photosynthetic pigment content of the leaves, modified the chlorophyll a fluorescence related parameters and also enhanced the photosystem activities of seedlings when compared to their respective non-primed controls. BABA priming also caused increased mitochondrial activities of the rice seedlings. Moreover, BABA priming significantly reduced malondialdehyde content in the seedlings and also resulted in accumulation of proline especially in the NaCl tolerant variety Vyttila 6. BABA seed priming also enhanced the activity of nitrate reductase enzyme and activities of antioxidant enzymes like guaiacol peroxidase and superoxide dismutase. The presence of BABA was detected by high performance thin layer chromatography analysis in the rice seeds whereas in the seedlings it was not detected. Thus, it can be inferred that the seed priming effect of BABA mainly occurred within the seeds, which was further carried to the seedlings. It is concluded that BABA priming of seeds improved the drought and salinity stress tolerance of all the three rice varieties and it was significantly evident in the drought tolerant variety Vaisakh and NaCl tolerant variety Vyttila 6, when compared to the stress sensitive variety Neeraja.展开更多
Novel fluorine substituted α-amino phosphonic acids containing 1,2,4-triazin- 5-one (6a-f) have been obtained from fluoroacylation of 6-(2′-amino-5′-nitrophenyl)-3-thioxo-1,2,4-triazin-5(4H)-one (...Novel fluorine substituted α-amino phosphonic acids containing 1,2,4-triazin- 5-one (6a-f) have been obtained from fluoroacylation of 6-(2′-amino-5′-nitrophenyl)-3-thioxo-1,2,4-triazin-5(4H)-one (1) followed by ammonilysis to give the corresponding 3-amino-derivative 3. Condensation of compound 3 with nitro/halogenated aromatic aldehydes yielded the Schiff bases 4. The simple addition of diethyl phosphonate to compound 4 produced the α-amino phosphonates 5. Acidic hydrolysis of compound 5 produced the fluorine substituted α-amino acids derivatives 6. Structures of the new compounds have been established with the help of elemental analysis and spectral measurements. Also, the products evaluated as antioxidants, where the fluorinated α-amino phosphonic acids 6 are more active than the other synthesized systems.展开更多
A novel cationic Pt(Ⅱ)complex 2 with 2-(2,4-difluorophenyl)pyridine as the cyclometalating ligand and 1,10-phenanthroline as the auxiliary ligand has been synthesized and fully characterized.This complex exhibits muc...A novel cationic Pt(Ⅱ)complex 2 with 2-(2,4-difluorophenyl)pyridine as the cyclometalating ligand and 1,10-phenanthroline as the auxiliary ligand has been synthesized and fully characterized.This complex exhibits much higher aggregation-induced phosphorescent emission activity than that of a nonfluorinated complex 1 in CH_(3)CN/H_(2)O.The complex 2 demonstrates efficient detection on picric acid(PA)in CH_(3)CN/H_(2)O,providing a high quenching constant(K_(SV)=2.3×10^(4) L/mol)and a low limit of detection(LOD=0.26μmol/L).In addition,complex 2 shows high selectivity for detection of PA in real water samples.Density functional theory calculations and proton nuclear magnetic resonance spectra suggest that the detection mechanism is attributed to the photo-induced electron transfer.展开更多
(6S)-6-Fluoroshikimic acid 2 and (6 R ) 6 hydroxyshikimic acid 3 have been synthesized via an OsO 4 catalysed dihydroxylation of diene 7, which was derived from (-) shikimic acid 1.
文摘We studied the influence of seed priming with beta-amino butyric acid(BABA) on the growth, physiological and biochemical parameters of seedlings with varied abiotic stress tolerance, which were raised and grown under unstressed and stressed(NaCl/PEG-6000) conditions. Under stressed conditions, the growth of rice seedlings was less when compared to control plants. After BABA priming, the seedling growth increased both under unstressed and stressed conditions as compared to the respective controls. BABA priming of rice seeds caused increase in the photosynthetic pigment content of the leaves, modified the chlorophyll a fluorescence related parameters and also enhanced the photosystem activities of seedlings when compared to their respective non-primed controls. BABA priming also caused increased mitochondrial activities of the rice seedlings. Moreover, BABA priming significantly reduced malondialdehyde content in the seedlings and also resulted in accumulation of proline especially in the NaCl tolerant variety Vyttila 6. BABA seed priming also enhanced the activity of nitrate reductase enzyme and activities of antioxidant enzymes like guaiacol peroxidase and superoxide dismutase. The presence of BABA was detected by high performance thin layer chromatography analysis in the rice seeds whereas in the seedlings it was not detected. Thus, it can be inferred that the seed priming effect of BABA mainly occurred within the seeds, which was further carried to the seedlings. It is concluded that BABA priming of seeds improved the drought and salinity stress tolerance of all the three rice varieties and it was significantly evident in the drought tolerant variety Vaisakh and NaCl tolerant variety Vyttila 6, when compared to the stress sensitive variety Neeraja.
文摘Novel fluorine substituted α-amino phosphonic acids containing 1,2,4-triazin- 5-one (6a-f) have been obtained from fluoroacylation of 6-(2′-amino-5′-nitrophenyl)-3-thioxo-1,2,4-triazin-5(4H)-one (1) followed by ammonilysis to give the corresponding 3-amino-derivative 3. Condensation of compound 3 with nitro/halogenated aromatic aldehydes yielded the Schiff bases 4. The simple addition of diethyl phosphonate to compound 4 produced the α-amino phosphonates 5. Acidic hydrolysis of compound 5 produced the fluorine substituted α-amino acids derivatives 6. Structures of the new compounds have been established with the help of elemental analysis and spectral measurements. Also, the products evaluated as antioxidants, where the fluorinated α-amino phosphonic acids 6 are more active than the other synthesized systems.
基金financial support from the National Natural Science Foundation of China(No.21978042)the Fundamental Research Funds for the Central Universities(No.DUT22LAB610).
文摘A novel cationic Pt(Ⅱ)complex 2 with 2-(2,4-difluorophenyl)pyridine as the cyclometalating ligand and 1,10-phenanthroline as the auxiliary ligand has been synthesized and fully characterized.This complex exhibits much higher aggregation-induced phosphorescent emission activity than that of a nonfluorinated complex 1 in CH_(3)CN/H_(2)O.The complex 2 demonstrates efficient detection on picric acid(PA)in CH_(3)CN/H_(2)O,providing a high quenching constant(K_(SV)=2.3×10^(4) L/mol)and a low limit of detection(LOD=0.26μmol/L).In addition,complex 2 shows high selectivity for detection of PA in real water samples.Density functional theory calculations and proton nuclear magnetic resonance spectra suggest that the detection mechanism is attributed to the photo-induced electron transfer.
文摘(6S)-6-Fluoroshikimic acid 2 and (6 R ) 6 hydroxyshikimic acid 3 have been synthesized via an OsO 4 catalysed dihydroxylation of diene 7, which was derived from (-) shikimic acid 1.