Municipal solid waste(MSW)is an important destination for abandoned plastics.During the waste disposal process,large plastic debris is broken down into microplastics(MPs)and released into the leachate.However,current ...Municipal solid waste(MSW)is an important destination for abandoned plastics.During the waste disposal process,large plastic debris is broken down into microplastics(MPs)and released into the leachate.However,current research only focuses on landfill leachates,and the occurrence of MPs in other leachates has not been studied.Therefore,herein,the abundance and characteristics of MPs in three types of leachates,namely,landfill leachate,residual waste leachate,and household food waste leachate,were studied,all leachates were collected from the largest waste disposal center in China.The results showed that the average MP abundances in the different types of leachates ranged from(129±54)to(1288±184)MP particles per liter(particlesL1)and the household food waste leachate exhibited the highest MP abundance(p<0.05).Polyethylene(PE)and fragments were the dominant polymer type and shape in MPs,respectively.The characteristic polymer types of MPs in individual leachates were different.Furthermore,the conditional fragmentation model indicated that the landfilling process considerably affected the size distribution of MPs in leachates,leading to a higher percentage(>80%)of small MPs(20–100 lm)in landfill leachates compared to other leachates.To the best of our knowledge,this is the first study discussing the sources of MPs in different leachates,which is important for MP pollution control during MSW disposal.展开更多
This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recyclin...This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recycling method that directly produces CAM precursors from LIB leachate,is explored.This process encompasses six key steps,including pretreatment,leaching,purification,adjustment of metal concentrations,precursor synthesis,and sintering.The review also investigates the potential introduction of impurity elements during CAM resynthesis and provides tolerance levels for these impurities based on thorough reference analysis.Additionally,it addresses challenges related to the commercialization of the resynthesis process.Notably,this review represents the first comprehensive assessment of CAM resynthesis,including the systematic evaluation of 12 impurity elements(Fe,Li,Al,Cu,C,P,F,Na,Cl,S,Mg,and Zn).Overall,this comprehensive review is poised to support the commercial development of resynthesized CAMs by offering valuable guidelines for managing impurities and streamlining the purification process.展开更多
Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using n...Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using novel processing technologies: super-heated steaming(SHS), auto-electric cooking(AEC), and pressurized-steam cooking(PSC). Additionally, the effect of two different target water contents(58% and 63%) was also evaluated. The PSC_63% sample had the highest total solids and amylopectin amount in the leachate. The amylopectin amount in the leachate differed significantly based on the targeted water content. Morphological characterization revealed that the swelling of starch and the coated layer on the surface of rice grains were most pronounced in the PSC_63% sample due to the pressure processing. The textural hardness of the AEC_58% sample was much higher than that of the other samples. The PSC_63% sample had the highest textural adhesiveness value, which can be attributed to the highest amylopectin amount in the leachate. Sensory characterization showed that the PSC_63% sample had the highest glossiness, whiteness, moistness, and overall acceptability. The principal component analysis score plots presented substantial differences in the leachate and textural and sensory characteristics of reheated convenience rice among the different processing technologies.展开更多
In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl me...In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.展开更多
Fecal coliform bacteria such as Escherichia coli (E. coli) are one of the main sources of groundwater pollution. An assessment of the transport and Persistence of E. coli in poultry litter amended Decatur silty Clay s...Fecal coliform bacteria such as Escherichia coli (E. coli) are one of the main sources of groundwater pollution. An assessment of the transport and Persistence of E. coli in poultry litter amended Decatur silty Clay soil and Hartsells Sandy soil was conducted using soil columns and simulated groundwater leaching. Enumeration of initial E. coli was determined to range from 2.851 × 10<sup>3</sup> to 3.044 × 10<sup>3</sup> CFU per gram of soil. These results have been used in a batch study to determine the persistence rate of E. coli in Decatur silty Clay soil and Hartsells Sandy soil. Results prove that E. coli survival growth rate increases for clay soil later than and at a higher rate than sandy soil. The column study has determined that E. coli was transported at a rate of 3.7 × 10<sup>6</sup><sup> </sup>CFU for Decatur silty loam and 6.3 × 10<sup>6</sup><sup> </sup>CFU for Hartsells sandy per gram of soil. Further, linear regression analysis predictions show higher porosity and soil moisture content affect transport, and Hartsells sandy soil has higher transport of E. coli due to its higher porosity and lower volumetric water content.展开更多
Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region o...Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region of Zanjan City,Iran,where groundwater is utilized for drinking,agricultural,and industrial purposes.We analyzed 18 parameters of dump site leachate,including physicochemical,heavy metals,and bacterial properties,alongside 13 groundwater samples.Sampling was conducted twice,in November 2020 and June 2021,within a five-kilometer radius of the Zanjan dump site.We utilized the Leachate Pollution Index(LPI)to evaluate potential groundwater contamination by leachate leakage from nearby dumpsite.Additionally,due to the predominant agricultural activities in the study area,various indices were employed to assess groundwater quality for agricultural purposes,such as Sodium Adsorption Ratio(SAR),Soluble Sodium Index(SSI),Kelly Ratio(KR),and Permeability Index(PI).Our analysis revealed no observed contamination related to leachate in the study area according to the LPI results.However,with the persistent pollution threat,implementing sanitary measures at the dump site is crucial to prevent potential impacts on groundwater quality.Moreover,the assessment of groundwater quality adequacy for irrigation yielded satisfactory results for SAR,KR,and PI indices.However,during both the dry(November 2020)and wet seasons(June 2021),the SSP index indicated that 80%of the samples were not classified as excellent,suggesting groundwater may not be suitable for agriculture.Overal,our qualitative study highlights the significant impact of the dry season on groundwater quality in the study area,attributed to elevated concentration levels of the investigated parameters within groundwater sources during the dry season.展开更多
Population growth combined with the rising standard of living of people around the world is the reason for the ever-increasing production of waste which management is costing states a lot of money for its disposal. Am...Population growth combined with the rising standard of living of people around the world is the reason for the ever-increasing production of waste which management is costing states a lot of money for its disposal. Among available waste treatment techniques, landfill is one of the most promoted waste management techniques with the emergence of the bioreactor concept. However, the control of biodegradation parameters in order to accelerate waste stabilization is an important issue. For environmental and economic reasons, the technique of leachate recirculation by injection into the waste is increasingly used to improve the degradation of landfilled waste. The injection of leachate is possible using vertical boreholes, horizontal pipes, infiltration ponds or a combination of these. Indeed, moisture is the main factor in waste degradation and biogas production. The migration of leachate to the bottom of the landfill creates low moisture in the upper areas of the landfill reducing the growth of microbial populations. This results in low or no biogas production. The main objective of the present work is to develop a numerical model of leachate recirculation by injection into the waste to rewet the waste and restart biological activity. The analysis of the results shows that the diffusion of the wet front increases with time and depth. The lateral widening of the wet front is slow in relation to the progression of the wet front towards the bottom of the waste cell. This indicates the predominance of gravity effects over diffusion phenomena. The results reveal that the distributed re-injection is the best mode of leachate recirculation because the moisture distribution on the whole waste mass is totally satisfactory and the biogas generation is more important. Leachate recirculation campaigns should be done periodically to rewet the waste, boost microbial activity and hope for a quicker stabilization of the landfill.展开更多
The geochemical components of the leachate from loess-paleosol deposits can provide information about climaterelated post-depositional processes.For example,leachate lithium([Li]_(leachate))is a potential paleoclimate...The geochemical components of the leachate from loess-paleosol deposits can provide information about climaterelated post-depositional processes.For example,leachate lithium([Li]_(leachate))is a potential paleoclimate proxy because lithium is a typical lithophile element that is readily adsorbed by clay minerals during weathering and pedogenesis,and thus stratigraphic variations in[Li]leachatecan reflect these processes.We investigated the[Li]leachatevalues of two loess-paleosols profiles(the Luochuan and Weinan sections),on a north-south climatic gradient on the Chinese Loess Plateau.Independent paleoclimate information was provided by measurements of magnetic susceptibility,grain size,Rb/Sr ratios,and clay mineral content.During the last glacial-interglacial period,[Li]leachateincreased from 0.39 to 1.97μg/g at Luochuan and from 0.67 to 2.45μg/g at Weinan,mainly due to increasing pedogenesis.Based on these results we developed a conceptual model to explain the variations in[Li]leachate,Li^(+)within loess layers is mainly derived from dust input and the decomposition of primary minerals,influenced by the East Asian winter monsoon,while in paleosol layers Li is mainly derived from clay mineral adsorption during pedogenic processes,influenced by the East Asian summer monsoon.展开更多
After washing and curing, P is transported from the phosphogypsum to the leachate during the phosphogypsum detoxification process, providing two ideas for phosphorus recovery from phosphogypsum leachate: 1) preparatio...After washing and curing, P is transported from the phosphogypsum to the leachate during the phosphogypsum detoxification process, providing two ideas for phosphorus recovery from phosphogypsum leachate: 1) preparation of calcium hydrogen phosphate for feed;2) preparation of calcium phosphate. A ready-to-use calcium oxide slurry was used to recover P from phosphogypsum leachate at a slurry concentration of 20% and a quantitative link between calcium to phosphorus ratio and fixation rate was fitted by mixed use batch experiments, reaction kinetics and thermodynamics, and theoretical calculations were used to demonstrate that phosphorus cannot be completely reused in the preparation of calcium hydrogen phosphate. The findings demonstrated that: a) the residual phosphorus concentration was in the range of 1300 - 1500 mg/L for the preparation of type I feed grade calcium hydrogen phosphate from phosphogypsum leachate;b) the P removal effect could reach 99.99% for the preparation of calcium phosphate from phosphogypsum using the theoretical equation: fixation rate = 87.91 - 10.96(Ca/P) + 3.22(Ca/P)<sup>2</sup> (R<sup>2</sup> = 0.9954);c) The procedure follows the suggested secondary kinetics, and according to the Freundlich isothermal model, the reaction process is under the control of the chemical reaction, with a reaction index of 0.7605. This study can be used as a theoretical guide for the recovery of P from phosphogypsum leachate, the preparation of products to bring about economic by-products, and the purification of wastewater for reuse.展开更多
Leachate from a sanitary landfill site in Chengdu, China is treated using a hybrid-UASB reactor at pilot scale. H2S, resulting from the anaerobic bioconversion process of sulfate-reducing bacteria(SRB), inhibits the...Leachate from a sanitary landfill site in Chengdu, China is treated using a hybrid-UASB reactor at pilot scale. H2S, resulting from the anaerobic bioconversion process of sulfate-reducing bacteria(SRB), inhibits the growth and activity of methane-producing bacteria(MPB)and poses serious problems of pollution, so FeCl3is used for H2S removal. The results show that the system performs well in the treatment process. COD removal generally increases with the increase in the organic loading rate(OLR), while the sulfate removal decreases slowly. As the OLR is higher than 7 kgCOD/(m3·d), both COD and sulfate removal tend to be stable. When the reactor is operated at the design load of 9 kgCOD/(m3·d), COD and sulfate removal remain about 79% and 91%, respectively. At the same time, the percentage of COD removed by SRB(CODSRB)also decreases from 8.9% to 4.0%. With FeCl3 addition, COD removal increases to 83%, while sulfate removal and CODSRBfurther decrease to 89% and 1.89%, respectively. According to the mass balance, nearly 82% of the sulfur is prevented from converting into H2S. Moreover, when the FeCl3 dosage is more than 1.6 g/L leachate, H2S can be removed totally from the biogas. Therefore, the application of FeCl3 for H2S removal in leachate treatment using the UASB reactor is very suitable and viable.展开更多
The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic ac...The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic acid (HA), fulvic acid (FA), and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The analytical results of fluorescence excitation-emission matrix spectroscopy (EEMs) revealed that the fluorescence peaks were protein-like fluorescence for young landfill leachate, while the fluorescence peaks for medium and old landfill leachate were humic-like and fulvic-like fluorescence, respectively. Elemental analysis showed that carbon, hydrogen, and nitrogen content decreased with landfill age, while the oxygen content increased. Moreover, the nitrogen content in these isolated fractions followed: HA 〉 HyI 〉 FA. The results of elemental analysis, FT-IR, and fluorescence EEMs also confirmed that aromatic carbons and portions of aliphatic functional groups were more abundant in leachate samples with increasing landfill age.展开更多
A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow ...A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow anaerobic sludge bed (UASB) reactor treating high ammonium municipal landfill leachate.The SN process was performed in an aerated upflow sludge bed (AUSB) reactor (working volume 3.05 L),treating about 50% of the diluted raw wastewater.The ammonium removal efficiency and the ratio of NO 2 N to NOx-N in the effluent were both higher than 80%,at a maximum nitrogen loading rate of 1.47 kg/(m 3 ·day).The ANAMMOX process was performed in an UASB reactor (working volume 8.5 L),using the mix of SN reactor effluent and diluted raw wastewater at a ratio of 1:1.The ammonium and nitrite removal efficiency reached over 93% and 95%,respectively,after 70-day continuous operation,at a maximum total nitrogen loading rate of 0.91 kg/(m 3 ·day),suggesting a successful operation of the combined process.The average nitrogen loading rate of the combined system was 0.56 kg/(m 3 ·day),with an average total inorganic nitrogen removal efficiency 87%.The nitrogen in the effluent was mostly nitrate.The results provided important evidence for the possibility of applying SN-ANAMMOX after UASB reactor to treat municipal landfill leachate.展开更多
A two-stage upflow anaerobic sludge blanket (UASB) and sequencing batch reactor (SBR) system was introduced to treat landfill leachate for advanced removal of COD and nitrogen at low temperature. In order to impro...A two-stage upflow anaerobic sludge blanket (UASB) and sequencing batch reactor (SBR) system was introduced to treat landfill leachate for advanced removal of COD and nitrogen at low temperature. In order to improve the total nitrogen (TN) removal efficiency and to reduce the COD requirement for denitrification, the raw leachate with recycled SBR nitrification supematant was pumped into the first-stage UASB (UASB1) to achieve simultaneous denitrification and methanogenesis. The results showed that UASB1 played an important role in COD removal and UASB2 and SBR further enhanced the nutrient removal efficiency. When the organic loading rates of UASB1, UASB2 and SBR were 11.95, 1.63 and 1.29 kg COD/(m^3.day), respectively, the total COD removal efficiency of the whole system reached 96.7%. The SBR acted as the real undertaker for NH4^+-N removal due to aerobic nitrification. The system obtained about 99.7% of NH4^+-N removal efficiency at relatively low temperature (14.9-10.9℃). More than 98.3% TN was removed through complete denitrification in UASB 1 and SBR. In addition, temperature had a significant effect on the rates of nitrification and denitrification rather than the removal of TN and NH4^+-N once the complete nitrification and denitrification were achieved.展开更多
Anaerobic ammonium oxidation (ANAMMOX) technology has potential technical superiority and economical efficiency for the nitrogen removal from landfill leachate, which contains high-strength ammonium nitrogen (NH4^...Anaerobic ammonium oxidation (ANAMMOX) technology has potential technical superiority and economical efficiency for the nitrogen removal from landfill leachate, which contains high-strength ammonium nitrogen (NH4^+-N) and refractory organics. To complete the ANAMMOX process, a preceding partial nitritation step to produce the appropriate ratio of nitrite/ammonium is a key stage. The objective of this study was to determine the optimal conditions to acquire constant partial nitritation for landfill leachate treatment, and a bench scale fixed bed bio-film reactor was used in this study to investigate the effects of the running factors on the partial nitritation. The results showed that both the dissolved oxygen (DO) concentration and the ammonium volumetric loading rate (Nv) had effects on the partial nitritation. In the controlling conditions with a temperature of 30±1℃, Nv of 0.2-1.0 kg NH4+-N/(m^3·d), and DO concentration of 0.8-2.3 mg/L, the steady partial nitritation was achieved as follows: more than 94% partial nitritation efficiency (nitrite as the main product), 60%-74% NH4^+-N removal efficiency, and NO2^--N/NH4^+-N ratio (concentration ratio) of 1.0-1.4 in the effluent.The impact of temperature was related to Nv at certain DO concentration, and the temperature range of 25-30℃ was suitable for treating high strength ammonium leachate. Ammonium-oxidizing bacteria (AOB) could be acclimated to higher FA (free ammonium) in the range of 122-224 mg/L. According to the denaturing gradient gel electrophoresis analysis result of the bio-film in the reactor, there were 25 kinds of 16S rRNA gene fragments, which indicated that abundant microbial communities existed in the bio-film, although high concentrations of ammonium and FA may inhibit the growth of the nitrite-oxidizing bacteria (NOB) and other microorganisms in the reactor.展开更多
To study the characteristics of stabilization in semi-aerobic landfill, large-scale simulated landfill was constructed based on the semi- aerobic landfill theory. Consequently, the concentrations of chemical oxygen de...To study the characteristics of stabilization in semi-aerobic landfill, large-scale simulated landfill was constructed based on the semi- aerobic landfill theory. Consequently, the concentrations of chemical oxygen demand (COD), ammonia nitrogen, and nitrite nitrogen, and the pH value in leachate, as well as the component contents of landfill gas composition (methane, carbon dioxide, and oxygen) in landfill were regularly monitored for 52 weeks. The restflts showed that COD and ammonia concentrations declined rapidly and did not show the accumulating rule like anaerobic landfill, and remained at about 300 and 100 mg/L, respectively, after 48 weeks. Meanwhile, the descending rate reached 98.9% and 96.9%, respectively. Nitrate concentration increased rapidly after 24 weeks and fluctuated between 220-280 mg/L after 43 weeks. The pH values were below 7 during the first 8 weeks and after that leachates appeared to be alkaline. Carbon dioxide was the main composition in landfill gas and its concentration remained at a high level through the whole stabilization process. The average contents of carbon dioxide, oxygen, and methane varied between 19 vol.%-28 vol.%, 2 vol.%-8 vol.%, and 5 vol.%-13 vol.%, respectively. A relative equilibrium was reached after 48 weeks. The highest temperature in the landfill chamber could amount to 75.8 degrees centigrade.展开更多
A field-scale aged refuse (AR) biofilter constructed in Shanghai Refuse Landfill, containing about 7000 m^3 aged refuse inside, was evaluated for its performance in the treatment of landfill leachate. This AR biofil...A field-scale aged refuse (AR) biofilter constructed in Shanghai Refuse Landfill, containing about 7000 m^3 aged refuse inside, was evaluated for its performance in the treatment of landfill leachate. This AR biofilter can be divided into three stages and can manage 50 m^3 landfill leachate per day. The physical, chemical, and biological characteristics of AR were analyzed for evaluating the AR biofilter as leachate treatment host. The results revealed that over 87.8%-96.2% of COD and 96.9%-99.4% of ammonia nitrogen were removed by the three-stage AR biofilter when the infiuent leachate COD and ammonia nitrogen concentration were in the range 5478-10842 mg/L and 811-1582 mg/L, respectively. The final effluent was inodorous and pale yellow with COD and ammonia nitrogen below 267-1020 mg/L and 6-45 mg/L, respectively. The three-stage AR biofilter had efficient nitrification but relative poor denitrification capacity with a total nitrogen (TN) removal of 58%-73%. The external temperature of AR biofilter did not influence the total ammonia nitrogen removal significantly. It was concluded that the scale-up AR biofilter can work very well and can be a promising technology for the treatment of landfill leachate.展开更多
Landfill leachates with different ages (mature leachate, 11 years; semi-mature leachate, 5 years; fresh leachate, under operation) were collected from Laogang Refuse Landfill, Shanghai to characterize the colloid si...Landfill leachates with different ages (mature leachate, 11 years; semi-mature leachate, 5 years; fresh leachate, under operation) were collected from Laogang Refuse Landfill, Shanghai to characterize the colloid size distribution and variations of leachate. These leachates were separated using micro-filtration and ultra-filtration into specific size fractions, i.e., suspended particles (SP) (〉 1.2 μm), coarse colloids (CC) (1.2-0.45 μm), fine colloids (FC) (0.45 m, 5 kDa/1 kDa molecular weight (MW)), and dissolved organic matters (DM, 〈 5 kDa/1 kDa MW). The specific colloids in each size fraction were quantified and characterized through chemical oxygen demands (COD), total solid (TS), pH, NH4^+-N, total organic carbon (TOC) and fixed solid (FS). It was found that COD, NH^4+-N and TS in leachate decreased significantly over ages, while pH increased. The dissolved fractions (〈 5 kDa/1 kDa) dominated (over 50%) in three leachates in terms of COD, and the organic matter content in dissolved fraction of leachates decreased and the inorganic matter increased as the disposal time extended, with the TOC/COD ratio 30%-7%. Dissolved fractions decreased from 82% to 40% in terms of TOC as the disposal time extended, suggested that the organic matter remained in leachate would form into middle molecular weight substances during the degradation process.展开更多
Nearly 91% of organic pollutants in Hong Kong leachate could be effectively removed by the UASB(upflow anaerobic sludge blanket) process followed by the fenton coagulation. The COD (chemical oxygen demand) of leachate...Nearly 91% of organic pollutants in Hong Kong leachate could be effectively removed by the UASB(upflow anaerobic sludge blanket) process followed by the fenton coagulation. The COD (chemical oxygen demand) of leachate was lowered from an average of 5620 mg/L to 1910 mg/L after the UASB treatment at 37℃, and was further lowered to 513 mg/L after fenton coagulation. The remaining refractory residues could be further removed by photochemical oxidation with the addition of H 2O 2. The BOD/COD ratio was greatly increased from 0.062 to 0.142, indicating the biodegradability of organic residues was improved. The photochemical oxidation for the fenton\|coagulation supernatant was most effective at pH 3\_4, with the addition of 800 mg/L of H 2O 2, and UV radiation time of 30 minutes. The final effluent contained only 148 mg/L of COD, 21 mg/L of BOD(biochemical oxygen demand) and 56 mg/L of TOC (total organic carbon).展开更多
An UASB+Anoxic/Oxic (A/O) system was introduced to treat a mature landfill leachate with low carbon-to-nitrogen ratio and high ammonia concentration. To make the best use of the biodegradable COD in the leaehate, t...An UASB+Anoxic/Oxic (A/O) system was introduced to treat a mature landfill leachate with low carbon-to-nitrogen ratio and high ammonia concentration. To make the best use of the biodegradable COD in the leaehate, the denitrifieation of NOx^--N in the reeireulation effluent from the elarifier was carried out in the UASB. The results showed that most biodegradable organic matters were removed by the denitrifieation in the UASB. The NH4^+-N loading rate (ALR) of A/O reactor and operational temperature was 0.28- 0.60 kg NH4^+-N/(m^3-d) and 17-29℃ during experimental period, respectively. The short-cut nitrification with nitrite accumulation efficiency of 90%-99% was stabilized during the whole experiment. The NH4^+-N removal efficiency varied between 90% and 100%. When ALR was less than 0.45 kg NH4^+-N/(m^3.d), the NH4^+-N removal efficiency was more than 98%. With the influent NH4^+-N of 1200-1800 mg/L, the effluent NH4^+-N was less than 15 mg/L. The shortcut nitrification and denitrifieation can save 40% carbon source, with a highly efficient denitrifieation taking place in the UASB. When the ratio of the feed COD to feed NH4^+-N was only 2-3, the total inorganic nitrogen (TIN) removal efficiency attained 67%-80%. Besides, the sludge samples from A/O reactor were analyzed using FISH. The FISH analysis revealed that ammonia oxidation bacteria (AOB) accounted for 4% of the total eubaeterial population, whereas nitrite oxidation bacteria (NOB) accounted only for 0.2% of the total eubaeterial population.展开更多
Landfill is the major disposal route of municipal solid waste(MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was p...Landfill is the major disposal route of municipal solid waste(MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was proposed as an effective alternative for leachate treatment by taking the landfill as a bioreactor. This process was proved not only considerably reducing the pollution potential of leachate, but also enhancing organic degradation in the landfill. However, as this paper shows, although direct leachate recycling was effective in landfilled MSW with low food waste fraction (3.5%, w/w), it failed in MSW containing 54% food waste, as normally noted in Asian countries. The initial acid stuck would inhibit methanogenesis to build up, hence strong leachate was yielded from landfill to threaten the quality of receiving water body. We demonstrated the feasibility to use an assisted bioreactor landfill, with a well-decomposed refuse layer as ex-situ anaerobic digester to reducing COD loading in leachate. By doing so, the refuse in simulated landfill column (2.3 m high) could be stabilized in 30 weeks while the COD in leachate reduced by 95%(61000 mg/L to 3000 mg/L). Meanwhile, the biogas production was considerably enhanced, signaling by the much greater amount and much higher methane content in the biogas.展开更多
基金supported by the National Key Research and Development Program of China(2023YFC3711600)the National Natural Science Foundation of China(22076045 and 22376066)the Shanghai Talent Development Funding,and the Shanghai Youth Talent Support Program.
文摘Municipal solid waste(MSW)is an important destination for abandoned plastics.During the waste disposal process,large plastic debris is broken down into microplastics(MPs)and released into the leachate.However,current research only focuses on landfill leachates,and the occurrence of MPs in other leachates has not been studied.Therefore,herein,the abundance and characteristics of MPs in three types of leachates,namely,landfill leachate,residual waste leachate,and household food waste leachate,were studied,all leachates were collected from the largest waste disposal center in China.The results showed that the average MP abundances in the different types of leachates ranged from(129±54)to(1288±184)MP particles per liter(particlesL1)and the household food waste leachate exhibited the highest MP abundance(p<0.05).Polyethylene(PE)and fragments were the dominant polymer type and shape in MPs,respectively.The characteristic polymer types of MPs in individual leachates were different.Furthermore,the conditional fragmentation model indicated that the landfilling process considerably affected the size distribution of MPs in leachates,leading to a higher percentage(>80%)of small MPs(20–100 lm)in landfill leachates compared to other leachates.To the best of our knowledge,this is the first study discussing the sources of MPs in different leachates,which is important for MP pollution control during MSW disposal.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and ICT(RS-2023-00254424)Ministry of Education(2020R1A6A1A03038540))。
文摘This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recycling method that directly produces CAM precursors from LIB leachate,is explored.This process encompasses six key steps,including pretreatment,leaching,purification,adjustment of metal concentrations,precursor synthesis,and sintering.The review also investigates the potential introduction of impurity elements during CAM resynthesis and provides tolerance levels for these impurities based on thorough reference analysis.Additionally,it addresses challenges related to the commercialization of the resynthesis process.Notably,this review represents the first comprehensive assessment of CAM resynthesis,including the systematic evaluation of 12 impurity elements(Fe,Li,Al,Cu,C,P,F,Na,Cl,S,Mg,and Zn).Overall,this comprehensive review is poised to support the commercial development of resynthesized CAMs by offering valuable guidelines for managing impurities and streamlining the purification process.
基金supported by the High Value-added Food Technology Development Program in Korea (Grant No. 323002-4)the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry, Republic of Korea。
文摘Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using novel processing technologies: super-heated steaming(SHS), auto-electric cooking(AEC), and pressurized-steam cooking(PSC). Additionally, the effect of two different target water contents(58% and 63%) was also evaluated. The PSC_63% sample had the highest total solids and amylopectin amount in the leachate. The amylopectin amount in the leachate differed significantly based on the targeted water content. Morphological characterization revealed that the swelling of starch and the coated layer on the surface of rice grains were most pronounced in the PSC_63% sample due to the pressure processing. The textural hardness of the AEC_58% sample was much higher than that of the other samples. The PSC_63% sample had the highest textural adhesiveness value, which can be attributed to the highest amylopectin amount in the leachate. Sensory characterization showed that the PSC_63% sample had the highest glossiness, whiteness, moistness, and overall acceptability. The principal component analysis score plots presented substantial differences in the leachate and textural and sensory characteristics of reheated convenience rice among the different processing technologies.
基金supported by the National Natural Science Foundation of China(Nos.11605275 and 11675247)。
文摘In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.
文摘Fecal coliform bacteria such as Escherichia coli (E. coli) are one of the main sources of groundwater pollution. An assessment of the transport and Persistence of E. coli in poultry litter amended Decatur silty Clay soil and Hartsells Sandy soil was conducted using soil columns and simulated groundwater leaching. Enumeration of initial E. coli was determined to range from 2.851 × 10<sup>3</sup> to 3.044 × 10<sup>3</sup> CFU per gram of soil. These results have been used in a batch study to determine the persistence rate of E. coli in Decatur silty Clay soil and Hartsells Sandy soil. Results prove that E. coli survival growth rate increases for clay soil later than and at a higher rate than sandy soil. The column study has determined that E. coli was transported at a rate of 3.7 × 10<sup>6</sup><sup> </sup>CFU for Decatur silty loam and 6.3 × 10<sup>6</sup><sup> </sup>CFU for Hartsells sandy per gram of soil. Further, linear regression analysis predictions show higher porosity and soil moisture content affect transport, and Hartsells sandy soil has higher transport of E. coli due to its higher porosity and lower volumetric water content.
文摘Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region of Zanjan City,Iran,where groundwater is utilized for drinking,agricultural,and industrial purposes.We analyzed 18 parameters of dump site leachate,including physicochemical,heavy metals,and bacterial properties,alongside 13 groundwater samples.Sampling was conducted twice,in November 2020 and June 2021,within a five-kilometer radius of the Zanjan dump site.We utilized the Leachate Pollution Index(LPI)to evaluate potential groundwater contamination by leachate leakage from nearby dumpsite.Additionally,due to the predominant agricultural activities in the study area,various indices were employed to assess groundwater quality for agricultural purposes,such as Sodium Adsorption Ratio(SAR),Soluble Sodium Index(SSI),Kelly Ratio(KR),and Permeability Index(PI).Our analysis revealed no observed contamination related to leachate in the study area according to the LPI results.However,with the persistent pollution threat,implementing sanitary measures at the dump site is crucial to prevent potential impacts on groundwater quality.Moreover,the assessment of groundwater quality adequacy for irrigation yielded satisfactory results for SAR,KR,and PI indices.However,during both the dry(November 2020)and wet seasons(June 2021),the SSP index indicated that 80%of the samples were not classified as excellent,suggesting groundwater may not be suitable for agriculture.Overal,our qualitative study highlights the significant impact of the dry season on groundwater quality in the study area,attributed to elevated concentration levels of the investigated parameters within groundwater sources during the dry season.
文摘Population growth combined with the rising standard of living of people around the world is the reason for the ever-increasing production of waste which management is costing states a lot of money for its disposal. Among available waste treatment techniques, landfill is one of the most promoted waste management techniques with the emergence of the bioreactor concept. However, the control of biodegradation parameters in order to accelerate waste stabilization is an important issue. For environmental and economic reasons, the technique of leachate recirculation by injection into the waste is increasingly used to improve the degradation of landfilled waste. The injection of leachate is possible using vertical boreholes, horizontal pipes, infiltration ponds or a combination of these. Indeed, moisture is the main factor in waste degradation and biogas production. The migration of leachate to the bottom of the landfill creates low moisture in the upper areas of the landfill reducing the growth of microbial populations. This results in low or no biogas production. The main objective of the present work is to develop a numerical model of leachate recirculation by injection into the waste to rewet the waste and restart biological activity. The analysis of the results shows that the diffusion of the wet front increases with time and depth. The lateral widening of the wet front is slow in relation to the progression of the wet front towards the bottom of the waste cell. This indicates the predominance of gravity effects over diffusion phenomena. The results reveal that the distributed re-injection is the best mode of leachate recirculation because the moisture distribution on the whole waste mass is totally satisfactory and the biogas generation is more important. Leachate recirculation campaigns should be done periodically to rewet the waste, boost microbial activity and hope for a quicker stabilization of the landfill.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.42272221,41930863)the Fundamental Research Funds for the Central Universities(Grant No.300102272901)+1 种基金the Foundation of the State Key Laboratory of Loess and Quaternary Geology(Institute of Earth and Environment,CAS)(SKLLQG1905,SKLLQGPY2006)the Second Tibet Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0704,2019QZKK0101)。
文摘The geochemical components of the leachate from loess-paleosol deposits can provide information about climaterelated post-depositional processes.For example,leachate lithium([Li]_(leachate))is a potential paleoclimate proxy because lithium is a typical lithophile element that is readily adsorbed by clay minerals during weathering and pedogenesis,and thus stratigraphic variations in[Li]leachatecan reflect these processes.We investigated the[Li]leachatevalues of two loess-paleosols profiles(the Luochuan and Weinan sections),on a north-south climatic gradient on the Chinese Loess Plateau.Independent paleoclimate information was provided by measurements of magnetic susceptibility,grain size,Rb/Sr ratios,and clay mineral content.During the last glacial-interglacial period,[Li]leachateincreased from 0.39 to 1.97μg/g at Luochuan and from 0.67 to 2.45μg/g at Weinan,mainly due to increasing pedogenesis.Based on these results we developed a conceptual model to explain the variations in[Li]leachate,Li^(+)within loess layers is mainly derived from dust input and the decomposition of primary minerals,influenced by the East Asian winter monsoon,while in paleosol layers Li is mainly derived from clay mineral adsorption during pedogenic processes,influenced by the East Asian summer monsoon.
文摘After washing and curing, P is transported from the phosphogypsum to the leachate during the phosphogypsum detoxification process, providing two ideas for phosphorus recovery from phosphogypsum leachate: 1) preparation of calcium hydrogen phosphate for feed;2) preparation of calcium phosphate. A ready-to-use calcium oxide slurry was used to recover P from phosphogypsum leachate at a slurry concentration of 20% and a quantitative link between calcium to phosphorus ratio and fixation rate was fitted by mixed use batch experiments, reaction kinetics and thermodynamics, and theoretical calculations were used to demonstrate that phosphorus cannot be completely reused in the preparation of calcium hydrogen phosphate. The findings demonstrated that: a) the residual phosphorus concentration was in the range of 1300 - 1500 mg/L for the preparation of type I feed grade calcium hydrogen phosphate from phosphogypsum leachate;b) the P removal effect could reach 99.99% for the preparation of calcium phosphate from phosphogypsum using the theoretical equation: fixation rate = 87.91 - 10.96(Ca/P) + 3.22(Ca/P)<sup>2</sup> (R<sup>2</sup> = 0.9954);c) The procedure follows the suggested secondary kinetics, and according to the Freundlich isothermal model, the reaction process is under the control of the chemical reaction, with a reaction index of 0.7605. This study can be used as a theoretical guide for the recovery of P from phosphogypsum leachate, the preparation of products to bring about economic by-products, and the purification of wastewater for reuse.
文摘Leachate from a sanitary landfill site in Chengdu, China is treated using a hybrid-UASB reactor at pilot scale. H2S, resulting from the anaerobic bioconversion process of sulfate-reducing bacteria(SRB), inhibits the growth and activity of methane-producing bacteria(MPB)and poses serious problems of pollution, so FeCl3is used for H2S removal. The results show that the system performs well in the treatment process. COD removal generally increases with the increase in the organic loading rate(OLR), while the sulfate removal decreases slowly. As the OLR is higher than 7 kgCOD/(m3·d), both COD and sulfate removal tend to be stable. When the reactor is operated at the design load of 9 kgCOD/(m3·d), COD and sulfate removal remain about 79% and 91%, respectively. At the same time, the percentage of COD removed by SRB(CODSRB)also decreases from 8.9% to 4.0%. With FeCl3 addition, COD removal increases to 83%, while sulfate removal and CODSRBfurther decrease to 89% and 1.89%, respectively. According to the mass balance, nearly 82% of the sulfur is prevented from converting into H2S. Moreover, when the FeCl3 dosage is more than 1.6 g/L leachate, H2S can be removed totally from the biogas. Therefore, the application of FeCl3 for H2S removal in leachate treatment using the UASB reactor is very suitable and viable.
文摘The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic acid (HA), fulvic acid (FA), and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The analytical results of fluorescence excitation-emission matrix spectroscopy (EEMs) revealed that the fluorescence peaks were protein-like fluorescence for young landfill leachate, while the fluorescence peaks for medium and old landfill leachate were humic-like and fulvic-like fluorescence, respectively. Elemental analysis showed that carbon, hydrogen, and nitrogen content decreased with landfill age, while the oxygen content increased. Moreover, the nitrogen content in these isolated fractions followed: HA 〉 HyI 〉 FA. The results of elemental analysis, FT-IR, and fluorescence EEMs also confirmed that aromatic carbons and portions of aliphatic functional groups were more abundant in leachate samples with increasing landfill age.
基金supported by the Special Fundof State Key Joint Laboratory of Environment Simulation and Pollution Control,China (No. 08Y03ESPCT)the Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-Year Plan Period of China(No. 2006BACl9B01)
文摘A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow anaerobic sludge bed (UASB) reactor treating high ammonium municipal landfill leachate.The SN process was performed in an aerated upflow sludge bed (AUSB) reactor (working volume 3.05 L),treating about 50% of the diluted raw wastewater.The ammonium removal efficiency and the ratio of NO 2 N to NOx-N in the effluent were both higher than 80%,at a maximum nitrogen loading rate of 1.47 kg/(m 3 ·day).The ANAMMOX process was performed in an UASB reactor (working volume 8.5 L),using the mix of SN reactor effluent and diluted raw wastewater at a ratio of 1:1.The ammonium and nitrite removal efficiency reached over 93% and 95%,respectively,after 70-day continuous operation,at a maximum total nitrogen loading rate of 0.91 kg/(m 3 ·day),suggesting a successful operation of the combined process.The average nitrogen loading rate of the combined system was 0.56 kg/(m 3 ·day),with an average total inorganic nitrogen removal efficiency 87%.The nitrogen in the effluent was mostly nitrate.The results provided important evidence for the possibility of applying SN-ANAMMOX after UASB reactor to treat municipal landfill leachate.
基金supported by the National Natural Science Foundation of China (No.50978003)the Beijing Natural Science Foundation (No.8091001)+1 种基金the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (No.PHR20090502)the State Key Laboratory of Urban Water Resource and Environment (No.QAK200802)
文摘A two-stage upflow anaerobic sludge blanket (UASB) and sequencing batch reactor (SBR) system was introduced to treat landfill leachate for advanced removal of COD and nitrogen at low temperature. In order to improve the total nitrogen (TN) removal efficiency and to reduce the COD requirement for denitrification, the raw leachate with recycled SBR nitrification supematant was pumped into the first-stage UASB (UASB1) to achieve simultaneous denitrification and methanogenesis. The results showed that UASB1 played an important role in COD removal and UASB2 and SBR further enhanced the nutrient removal efficiency. When the organic loading rates of UASB1, UASB2 and SBR were 11.95, 1.63 and 1.29 kg COD/(m^3.day), respectively, the total COD removal efficiency of the whole system reached 96.7%. The SBR acted as the real undertaker for NH4^+-N removal due to aerobic nitrification. The system obtained about 99.7% of NH4^+-N removal efficiency at relatively low temperature (14.9-10.9℃). More than 98.3% TN was removed through complete denitrification in UASB 1 and SBR. In addition, temperature had a significant effect on the rates of nitrification and denitrification rather than the removal of TN and NH4^+-N once the complete nitrification and denitrification were achieved.
基金Project supported by the National Natural Science Foundation of China (No. 50238050)the Hi-Tech Research and Development Program (863) of China (No. 2002AA649250).
文摘Anaerobic ammonium oxidation (ANAMMOX) technology has potential technical superiority and economical efficiency for the nitrogen removal from landfill leachate, which contains high-strength ammonium nitrogen (NH4^+-N) and refractory organics. To complete the ANAMMOX process, a preceding partial nitritation step to produce the appropriate ratio of nitrite/ammonium is a key stage. The objective of this study was to determine the optimal conditions to acquire constant partial nitritation for landfill leachate treatment, and a bench scale fixed bed bio-film reactor was used in this study to investigate the effects of the running factors on the partial nitritation. The results showed that both the dissolved oxygen (DO) concentration and the ammonium volumetric loading rate (Nv) had effects on the partial nitritation. In the controlling conditions with a temperature of 30±1℃, Nv of 0.2-1.0 kg NH4+-N/(m^3·d), and DO concentration of 0.8-2.3 mg/L, the steady partial nitritation was achieved as follows: more than 94% partial nitritation efficiency (nitrite as the main product), 60%-74% NH4^+-N removal efficiency, and NO2^--N/NH4^+-N ratio (concentration ratio) of 1.0-1.4 in the effluent.The impact of temperature was related to Nv at certain DO concentration, and the temperature range of 25-30℃ was suitable for treating high strength ammonium leachate. Ammonium-oxidizing bacteria (AOB) could be acclimated to higher FA (free ammonium) in the range of 122-224 mg/L. According to the denaturing gradient gel electrophoresis analysis result of the bio-film in the reactor, there were 25 kinds of 16S rRNA gene fragments, which indicated that abundant microbial communities existed in the bio-film, although high concentrations of ammonium and FA may inhibit the growth of the nitrite-oxidizing bacteria (NOB) and other microorganisms in the reactor.
文摘To study the characteristics of stabilization in semi-aerobic landfill, large-scale simulated landfill was constructed based on the semi- aerobic landfill theory. Consequently, the concentrations of chemical oxygen demand (COD), ammonia nitrogen, and nitrite nitrogen, and the pH value in leachate, as well as the component contents of landfill gas composition (methane, carbon dioxide, and oxygen) in landfill were regularly monitored for 52 weeks. The restflts showed that COD and ammonia concentrations declined rapidly and did not show the accumulating rule like anaerobic landfill, and remained at about 300 and 100 mg/L, respectively, after 48 weeks. Meanwhile, the descending rate reached 98.9% and 96.9%, respectively. Nitrate concentration increased rapidly after 24 weeks and fluctuated between 220-280 mg/L after 43 weeks. The pH values were below 7 during the first 8 weeks and after that leachates appeared to be alkaline. Carbon dioxide was the main composition in landfill gas and its concentration remained at a high level through the whole stabilization process. The average contents of carbon dioxide, oxygen, and methane varied between 19 vol.%-28 vol.%, 2 vol.%-8 vol.%, and 5 vol.%-13 vol.%, respectively. A relative equilibrium was reached after 48 weeks. The highest temperature in the landfill chamber could amount to 75.8 degrees centigrade.
基金supported by the Ministry of Education of China (No. 305005)the Science and Technology Commission of Shanghai Municipality (No. 05DZ12003).
文摘A field-scale aged refuse (AR) biofilter constructed in Shanghai Refuse Landfill, containing about 7000 m^3 aged refuse inside, was evaluated for its performance in the treatment of landfill leachate. This AR biofilter can be divided into three stages and can manage 50 m^3 landfill leachate per day. The physical, chemical, and biological characteristics of AR were analyzed for evaluating the AR biofilter as leachate treatment host. The results revealed that over 87.8%-96.2% of COD and 96.9%-99.4% of ammonia nitrogen were removed by the three-stage AR biofilter when the infiuent leachate COD and ammonia nitrogen concentration were in the range 5478-10842 mg/L and 811-1582 mg/L, respectively. The final effluent was inodorous and pale yellow with COD and ammonia nitrogen below 267-1020 mg/L and 6-45 mg/L, respectively. The three-stage AR biofilter had efficient nitrification but relative poor denitrification capacity with a total nitrogen (TN) removal of 58%-73%. The external temperature of AR biofilter did not influence the total ammonia nitrogen removal significantly. It was concluded that the scale-up AR biofilter can work very well and can be a promising technology for the treatment of landfill leachate.
基金supported by the State Key Laboratory of Pollution Control and Resource Reuse Foundation(No.PCRRF09008)the Key Project of Science and Technology Commission of Shanghai Municipality (No.08Dz1202800)
文摘Landfill leachates with different ages (mature leachate, 11 years; semi-mature leachate, 5 years; fresh leachate, under operation) were collected from Laogang Refuse Landfill, Shanghai to characterize the colloid size distribution and variations of leachate. These leachates were separated using micro-filtration and ultra-filtration into specific size fractions, i.e., suspended particles (SP) (〉 1.2 μm), coarse colloids (CC) (1.2-0.45 μm), fine colloids (FC) (0.45 m, 5 kDa/1 kDa molecular weight (MW)), and dissolved organic matters (DM, 〈 5 kDa/1 kDa MW). The specific colloids in each size fraction were quantified and characterized through chemical oxygen demands (COD), total solid (TS), pH, NH4^+-N, total organic carbon (TOC) and fixed solid (FS). It was found that COD, NH^4+-N and TS in leachate decreased significantly over ages, while pH increased. The dissolved fractions (〈 5 kDa/1 kDa) dominated (over 50%) in three leachates in terms of COD, and the organic matter content in dissolved fraction of leachates decreased and the inorganic matter increased as the disposal time extended, with the TOC/COD ratio 30%-7%. Dissolved fractions decreased from 82% to 40% in terms of TOC as the disposal time extended, suggested that the organic matter remained in leachate would form into middle molecular weight substances during the degradation process.
文摘Nearly 91% of organic pollutants in Hong Kong leachate could be effectively removed by the UASB(upflow anaerobic sludge blanket) process followed by the fenton coagulation. The COD (chemical oxygen demand) of leachate was lowered from an average of 5620 mg/L to 1910 mg/L after the UASB treatment at 37℃, and was further lowered to 513 mg/L after fenton coagulation. The remaining refractory residues could be further removed by photochemical oxidation with the addition of H 2O 2. The BOD/COD ratio was greatly increased from 0.062 to 0.142, indicating the biodegradability of organic residues was improved. The photochemical oxidation for the fenton\|coagulation supernatant was most effective at pH 3\_4, with the addition of 800 mg/L of H 2O 2, and UV radiation time of 30 minutes. The final effluent contained only 148 mg/L of COD, 21 mg/L of BOD(biochemical oxygen demand) and 56 mg/L of TOC (total organic carbon).
基金Project supported by the National Natural Science Foundation of China(No.50521140075)the Funding Project for Academic Human Resource Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality(PHR(IHLB))the international cooperationproject financed by Beijing Municipal Science and Technology Commission.
文摘An UASB+Anoxic/Oxic (A/O) system was introduced to treat a mature landfill leachate with low carbon-to-nitrogen ratio and high ammonia concentration. To make the best use of the biodegradable COD in the leaehate, the denitrifieation of NOx^--N in the reeireulation effluent from the elarifier was carried out in the UASB. The results showed that most biodegradable organic matters were removed by the denitrifieation in the UASB. The NH4^+-N loading rate (ALR) of A/O reactor and operational temperature was 0.28- 0.60 kg NH4^+-N/(m^3-d) and 17-29℃ during experimental period, respectively. The short-cut nitrification with nitrite accumulation efficiency of 90%-99% was stabilized during the whole experiment. The NH4^+-N removal efficiency varied between 90% and 100%. When ALR was less than 0.45 kg NH4^+-N/(m^3.d), the NH4^+-N removal efficiency was more than 98%. With the influent NH4^+-N of 1200-1800 mg/L, the effluent NH4^+-N was less than 15 mg/L. The shortcut nitrification and denitrifieation can save 40% carbon source, with a highly efficient denitrifieation taking place in the UASB. When the ratio of the feed COD to feed NH4^+-N was only 2-3, the total inorganic nitrogen (TIN) removal efficiency attained 67%-80%. Besides, the sludge samples from A/O reactor were analyzed using FISH. The FISH analysis revealed that ammonia oxidation bacteria (AOB) accounted for 4% of the total eubaeterial population, whereas nitrite oxidation bacteria (NOB) accounted only for 0.2% of the total eubaeterial population.
文摘Landfill is the major disposal route of municipal solid waste(MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was proposed as an effective alternative for leachate treatment by taking the landfill as a bioreactor. This process was proved not only considerably reducing the pollution potential of leachate, but also enhancing organic degradation in the landfill. However, as this paper shows, although direct leachate recycling was effective in landfilled MSW with low food waste fraction (3.5%, w/w), it failed in MSW containing 54% food waste, as normally noted in Asian countries. The initial acid stuck would inhibit methanogenesis to build up, hence strong leachate was yielded from landfill to threaten the quality of receiving water body. We demonstrated the feasibility to use an assisted bioreactor landfill, with a well-decomposed refuse layer as ex-situ anaerobic digester to reducing COD loading in leachate. By doing so, the refuse in simulated landfill column (2.3 m high) could be stabilized in 30 weeks while the COD in leachate reduced by 95%(61000 mg/L to 3000 mg/L). Meanwhile, the biogas production was considerably enhanced, signaling by the much greater amount and much higher methane content in the biogas.