Mold flux serves the crucial metallurgical function of absorbing inclusions, directly impacting the smoothness of the casting process as well as the cast slab quality. In this study, the dissolution behavior and mecha...Mold flux serves the crucial metallurgical function of absorbing inclusions, directly impacting the smoothness of the casting process as well as the cast slab quality. In this study, the dissolution behavior and mechanism of Ti O_(2)and Ti N inclusions in molten Ca O–Si O_(2)–B_(2)O_(3)-based fluorine-free mold flux were explored by in situ single hot thermocouple technology combined with X-ray photoelectron spectroscopy.The results showed that Ti O_(2) inclusions are effectively dissolved by the molten slag within 76 s, during which the original octahedral [Ti O_(6)]^(8-)structures are destroyed and convert to the networker tetrahedral [Ti O_(4)]^(4-)structures. However, the dissolution rate is much lower for Ti N inclusions than for Ti O_(2)inclusions. This can be attributed to the fact that the Ti N particles need to be oxidized and then dissolved in the molten slag to form tetrahedral [Ti O4]4-and octahedral [Ti O_(6)]^(8-)structures during the Ti N inclusion dissolution process, which is accompanied by the generation of a large amount of N_(2)gas. Moreover, Ca Ti O_(3)crystals tend to nucleate and grow on bubble surfaces with sufficient octahedral [Ti O_(6)]^(8-)structures and Ca^(2+)ions, eventually resulting in the molten slag being in a solid–liquid mixed state.展开更多
The melting temperature of Z coal ash was reduced by adding calcium–magnesium compound flux(WCaO/WMgO=1). In the process of simulated coal gasification, the coal ash and slag were prepared. The transformation of mine...The melting temperature of Z coal ash was reduced by adding calcium–magnesium compound flux(WCaO/WMgO=1). In the process of simulated coal gasification, the coal ash and slag were prepared. The transformation of minerals in coal ash and slag upon the change of temperature was studied by using X-ray diffraction(XRD). With the increase of temperatures, forsterite in the ash disappears, while the diffraction peak strength of magnesium spinel increases,and the content of the calcium feldspar increases, then the content of the amorphous phase in the ash increases obviously. The species and evolution process of oxygen, silicon, aluminum, calcium, magnesium at different temperatures were analyzed by X-ray photoelectron spectroscopy(XPS). The decrease of the ash melting point mainly affects the structural changes of silicon, aluminum and oxygen. The coordination of aluminum and oxygen in the aluminum element structure, e.g., tetracoordinated aluminum oxide, was changed. Tetrahedral [AlO4] and hexacoordinated aluminoxy octahedral [AlO6] change with the temperature changing. The addition of Ca2+ and Mg2+ destroys silica chain, making bridge oxide silicon change into non-bridge oxysilicon;and bridge oxygen bond was broken and non-bridge oxygen bond was produced in the oxygen element structure. The addition of calcium and magnesium compound flux reacts with aluminum oxide tetrahedron, aluminum oxide octahedron and silicon tetrahedron to promote the breakage of the bridge oxygen bond. Ca2+ and Mg2+ are easily combined with silicon oxide and aluminum oxide tetrahedron and aluminum. Oxygen octahedrons combine with non-oxygen bonds to generate low-melting temperature feldspars and magnesite minerals, thereby reducing the coal ash melting temperatures. The structure of kaolinite and mullite was simulated by quantum chemistry calculation, and kaolinite molecule has a stable structure.展开更多
In the paper, the effects of linear expansion coefficient and basic index of melting slag on the detachability of self shielded flux cored electrode (SSFCE) are investigated. An equation is obtained on the principles ...In the paper, the effects of linear expansion coefficient and basic index of melting slag on the detachability of self shielded flux cored electrode (SSFCE) are investigated. An equation is obtained on the principles of ceramics and mineralography which predict the detachability of basic SSFCE. In addition, stick slag mechanism of SSFCE is analyzed.展开更多
A low MgO content in sinter is conducive to reduce the MgO content in blast furnace slag.This study investigated the effect of MgO content in sinter on the softening–melting behavior of the mixed burden based on flux...A low MgO content in sinter is conducive to reduce the MgO content in blast furnace slag.This study investigated the effect of MgO content in sinter on the softening–melting behavior of the mixed burden based on fluxed pellets.When the MgO content increased from 1.31 wt% to 1.55 wt%, the melting temperature of sinter increased to 1521℃.Such an increase was due to the formation of the high-meltingpoint slag phase.The reduction degradation index of sinter with 1.31 wt% MgO content was better than that of others.The initial softening temperature of the mixed burden increased from 1104 to 1126℃ as MgO content in sinter increased from 1.31 wt% to 1.55 wt%, and the melting temperature decreased from 1494 to 1460℃.The permeability index(S-value) of mixed burden decreased to 594.46 kPa·℃ under a high MgO content with 1.55 wt%, indicating that the permeability was improved.The slag phase composition of burden was mainly akermarite(Ca_(2)MgSiO_(7)) when the MgO content in sinter was 1.55 wt%.The melting point of akermarite is 1450℃, which is lower than other phases.展开更多
Based on recently published experimental data, the Riboud model was modified for viscosity estimation of the slags containing calcium fluoride. The estimated values were in good agreement with measured data. Reasonabl...Based on recently published experimental data, the Riboud model was modified for viscosity estimation of the slags containing calcium fluoride. The estimated values were in good agreement with measured data. Reasonable estimation can be achieved using the modified Riboud model for mould fluxes and ESR (eletro slag remelting) slags. Especially for ESR slags, the modified Riboud model can provide much more precise values than the original Riboud model.展开更多
Slagging is a major problem in boilers,especially the low-rank coal applied in boilers.In this study,the influence of heat transfer surface on the slagging characteristics of a pilot-scale furnace was investigated.Ni ...Slagging is a major problem in boilers,especially the low-rank coal applied in boilers.In this study,the influence of heat transfer surface on the slagging characteristics of a pilot-scale furnace was investigated.Ni coatings were applied in modifying the deposition surface to control slagging.The growth characteristics of the slag were studied using an online digital image technique.Scanning electron microscopy linked with energy-dispersive X-ray analysis and X-ray diffraction(XRD)were applied to investigate the microstructure,semi-quantitative chemical composition,and mineralogy of slag samples.Ni coating demonstrated a positive effect on the mitigation of slagging.Results revealed that the thicknesses of the slag initially increased with experimental time and then inclined toward stable values for both cases(Case 1:substrate material;Case 2:modified surface).The stable thicknesses for Cases 1 and 2 were 4.91 mm and 3.95 mm,respectively.The heat transfer efficiency was improved by approximately 18.2%with the application of Ni coating for probe surface modification.The mechanism of the mitigation of slagging was investigated in this study.XRD results revealed that the content of alkali reduced when the surface was coated with Ni.The alkali significantly affected the adhesion behavior of the deposition.Hence,Ni coating showed potential in reducing slagging and increasing the efficiency of boilers.The overall study makes a contribution to a deep understanding of the effect of Ni coating on the growth characteristics of the slag.展开更多
Monolithic stoppers play a very important role in continuous casting( short for CC). Sometimes,the stopper slag line is seriously eroded and broken,CC has to pause. The research shows that there are three main reaso...Monolithic stoppers play a very important role in continuous casting( short for CC). Sometimes,the stopper slag line is seriously eroded and broken,CC has to pause. The research shows that there are three main reasons which bring severe erosion of monolithic stopper slag line. Firstly,much Fe_2O_3 and MnO in slag react with carbon( C) in the stopper,C is gradually eroded and erosion resistance of the stopper greatly weakens. Secondly,F increase in tundish covering flux will quicken erosion of the stopper slag line. Thirdly, High LOI of tundish covering flux also makes erosion of the stopper slag line speed up. On one hand,CaCO_3 in tundish covering flux decomposes and brings CO_2; on the other hand,minerals with water in tundish covering flux decompose at high temperatures and bring water vapor.Then CO_2 and water vapor react with C in the stopper,C is gradually eroded,aggravating the erosion.展开更多
The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative stu...The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative study of similar nature has also been carried out during flux-cored arc weld deposition in globular and spray transfer modes.The effect of pulse parameters has been studied by considering their mean current and arc voltage.The arc characteristics studied by its root diameter,projected diameter and length,and the behavior of metal transfer noted by the metal transfer model and the droplet diameter have been found to vary significantly with the pulse parameters.The observation may help in understanding the arc characteristics with respect to the variation in pulse parameters which may be beneficial in using pulse current FCAW to produce desired weld quality.展开更多
In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the ...In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the optimized mold flux were compared in a comprehensive way by using analytical measures, such as a slag film heat-flow simulator, a thermowire molten flux crystallization tester and an X-ray diffractometer in the laboratory. The results reveal that one of the major reasons for the cracks is the poor heat transfer ability of the original mold flux. However, the optimized mold flux with a high basicity features a high crystallizing rate,low crystallization temperature and low heat-flow density. Therefore, the optimized mold flux is more suitable for casting peritectic steel by the heavy slab continuous caster. The test results show that the slabs produced by using the optimized mold flux had no surface longitudinal crack in four test casts, while the surface longitudinal crack ratio of the slabs produced by using the original mold flux was 5%. The optimized mold flux can effectively prevent slab surface longitudinal cracks from occurring.展开更多
Prevention of nitrogen porosity in weld metal deposited with self-shielded flux cored wire with CaF2-TiO2-MgO slag system can be accomplished by using a 'killing agent' such as titanium to react with nitrogen ...Prevention of nitrogen porosity in weld metal deposited with self-shielded flux cored wire with CaF2-TiO2-MgO slag system can be accomplished by using a 'killing agent' such as titanium to react with nitrogen dissolved in the weld metal. The amount of titanium needed to prevent porosity is calculated thermodynamically for various dissolved nitrogen levels. Experimental flux cored wires are used to verify the thermodynamic model. It is concluded that approximately 0.11 wt% titanium in the weld deposit is need to prevent nitrogen porosity when welding without externally applied shielding.展开更多
Limestone or quicklime is a necessary flux in the iron ore sintering process.Its production and application process will cause CO_(2) emissions and various environmental pollution,but this has not attracted enough att...Limestone or quicklime is a necessary flux in the iron ore sintering process.Its production and application process will cause CO_(2) emissions and various environmental pollution,but this has not attracted enough attention.Carbide slag(CS)is a calcium-rich solid waste produced in acetylene production,the harmless disposal of which is still incomplete,resulting in soil and groundwater pollution.This study investigated the granulation characteristics and sintering performance of the sintering mixture with different proportions of CS.The results show that replacing limestone with an appropriate proportion of CS is promising and beneficial to the formation of high-quality bonding phase.When CS accounts for 75%of the total mass of CS and limestone,the tumbler index increases by 8.10%and the comprehensive index decreases only from 100 to 96.16,which is within the acceptable range.The application of CS in iron ore sintering can achieve a clean disposal of it and a considerable carbon emission reduction,as the main component of which is Ca(OH)_(2).展开更多
The crytallization behavior and melt structure of the CaO-Si0^(2-)B20_(3)-based fluorine-free mold fux were investigated.The results show that the crytallization of the mold fux was first inhibited and then promoted w...The crytallization behavior and melt structure of the CaO-Si0^(2-)B20_(3)-based fluorine-free mold fux were investigated.The results show that the crytallization of the mold fux was first inhibited and then promoted with the increase in Al_(2)0_(3) content from 4 to 12 wt.%.However,it was enhanced by MgO in the range of 2-10 wt.%.The results of Fourier transform infrared spectroscopy and Raman spectroscopy showed that Al_(2)0_(3) worked as a network former in the mold flux melt when its content was in the range of 4-8 wt.%,whereas it worked as the network breaker to provide 0^(2-)when its content was in the range of 8-12 wt.%.In addition,the combined efects from the charge compensation by Mg^(2+)and the network broken by 0^(2-)led to the increase in some typicalT-O-T(AI-O-A1,B-O-B,etc.,)and simpler structural units(Q^(2)(Si),B_^(O-)in the[B0_(2)0^(-)],.etc.)when the MgO content was in the range of 2-6 wt.%.The continuous increase in 0^(2-)provided by the addition of MgO from 6 to 10 wt.%further depolymerized the network of the melt and fnally caused fast crystallizationo.展开更多
基金financially supported by the Fellowship of China National Postdoctoral Program for Innovative Talents(No.BX20220357)the National Science Foundation of China (No.52130408)。
文摘Mold flux serves the crucial metallurgical function of absorbing inclusions, directly impacting the smoothness of the casting process as well as the cast slab quality. In this study, the dissolution behavior and mechanism of Ti O_(2)and Ti N inclusions in molten Ca O–Si O_(2)–B_(2)O_(3)-based fluorine-free mold flux were explored by in situ single hot thermocouple technology combined with X-ray photoelectron spectroscopy.The results showed that Ti O_(2) inclusions are effectively dissolved by the molten slag within 76 s, during which the original octahedral [Ti O_(6)]^(8-)structures are destroyed and convert to the networker tetrahedral [Ti O_(4)]^(4-)structures. However, the dissolution rate is much lower for Ti N inclusions than for Ti O_(2)inclusions. This can be attributed to the fact that the Ti N particles need to be oxidized and then dissolved in the molten slag to form tetrahedral [Ti O4]4-and octahedral [Ti O_(6)]^(8-)structures during the Ti N inclusion dissolution process, which is accompanied by the generation of a large amount of N_(2)gas. Moreover, Ca Ti O_(3)crystals tend to nucleate and grow on bubble surfaces with sufficient octahedral [Ti O_(6)]^(8-)structures and Ca^(2+)ions, eventually resulting in the molten slag being in a solid–liquid mixed state.
基金Supported partially by the Major Science and Technology Special Projects Foundation of Anhui Province(15czz02045)the Natural Science Foundation of Anhui Province(1508085MB41)the China Postdoctoral Science Foundation(2015M571915)
文摘The melting temperature of Z coal ash was reduced by adding calcium–magnesium compound flux(WCaO/WMgO=1). In the process of simulated coal gasification, the coal ash and slag were prepared. The transformation of minerals in coal ash and slag upon the change of temperature was studied by using X-ray diffraction(XRD). With the increase of temperatures, forsterite in the ash disappears, while the diffraction peak strength of magnesium spinel increases,and the content of the calcium feldspar increases, then the content of the amorphous phase in the ash increases obviously. The species and evolution process of oxygen, silicon, aluminum, calcium, magnesium at different temperatures were analyzed by X-ray photoelectron spectroscopy(XPS). The decrease of the ash melting point mainly affects the structural changes of silicon, aluminum and oxygen. The coordination of aluminum and oxygen in the aluminum element structure, e.g., tetracoordinated aluminum oxide, was changed. Tetrahedral [AlO4] and hexacoordinated aluminoxy octahedral [AlO6] change with the temperature changing. The addition of Ca2+ and Mg2+ destroys silica chain, making bridge oxide silicon change into non-bridge oxysilicon;and bridge oxygen bond was broken and non-bridge oxygen bond was produced in the oxygen element structure. The addition of calcium and magnesium compound flux reacts with aluminum oxide tetrahedron, aluminum oxide octahedron and silicon tetrahedron to promote the breakage of the bridge oxygen bond. Ca2+ and Mg2+ are easily combined with silicon oxide and aluminum oxide tetrahedron and aluminum. Oxygen octahedrons combine with non-oxygen bonds to generate low-melting temperature feldspars and magnesite minerals, thereby reducing the coal ash melting temperatures. The structure of kaolinite and mullite was simulated by quantum chemistry calculation, and kaolinite molecule has a stable structure.
文摘In the paper, the effects of linear expansion coefficient and basic index of melting slag on the detachability of self shielded flux cored electrode (SSFCE) are investigated. An equation is obtained on the principles of ceramics and mineralography which predict the detachability of basic SSFCE. In addition, stick slag mechanism of SSFCE is analyzed.
基金financially supported by the Fundamental Research Funds for the Central Universities, China (No.06500170)the Guangdong Basic and Applied Basic Research Foundation, China (No.2020A1515111008)。
文摘A low MgO content in sinter is conducive to reduce the MgO content in blast furnace slag.This study investigated the effect of MgO content in sinter on the softening–melting behavior of the mixed burden based on fluxed pellets.When the MgO content increased from 1.31 wt% to 1.55 wt%, the melting temperature of sinter increased to 1521℃.Such an increase was due to the formation of the high-meltingpoint slag phase.The reduction degradation index of sinter with 1.31 wt% MgO content was better than that of others.The initial softening temperature of the mixed burden increased from 1104 to 1126℃ as MgO content in sinter increased from 1.31 wt% to 1.55 wt%, and the melting temperature decreased from 1494 to 1460℃.The permeability index(S-value) of mixed burden decreased to 594.46 kPa·℃ under a high MgO content with 1.55 wt%, indicating that the permeability was improved.The slag phase composition of burden was mainly akermarite(Ca_(2)MgSiO_(7)) when the MgO content in sinter was 1.55 wt%.The melting point of akermarite is 1450℃, which is lower than other phases.
文摘Based on recently published experimental data, the Riboud model was modified for viscosity estimation of the slags containing calcium fluoride. The estimated values were in good agreement with measured data. Reasonable estimation can be achieved using the modified Riboud model for mould fluxes and ESR (eletro slag remelting) slags. Especially for ESR slags, the modified Riboud model can provide much more precise values than the original Riboud model.
基金Supported by the National Natural Science Foundation of China(51476137)National Science Fund for Distinguished Young Scholars(51825605)
文摘Slagging is a major problem in boilers,especially the low-rank coal applied in boilers.In this study,the influence of heat transfer surface on the slagging characteristics of a pilot-scale furnace was investigated.Ni coatings were applied in modifying the deposition surface to control slagging.The growth characteristics of the slag were studied using an online digital image technique.Scanning electron microscopy linked with energy-dispersive X-ray analysis and X-ray diffraction(XRD)were applied to investigate the microstructure,semi-quantitative chemical composition,and mineralogy of slag samples.Ni coating demonstrated a positive effect on the mitigation of slagging.Results revealed that the thicknesses of the slag initially increased with experimental time and then inclined toward stable values for both cases(Case 1:substrate material;Case 2:modified surface).The stable thicknesses for Cases 1 and 2 were 4.91 mm and 3.95 mm,respectively.The heat transfer efficiency was improved by approximately 18.2%with the application of Ni coating for probe surface modification.The mechanism of the mitigation of slagging was investigated in this study.XRD results revealed that the content of alkali reduced when the surface was coated with Ni.The alkali significantly affected the adhesion behavior of the deposition.Hence,Ni coating showed potential in reducing slagging and increasing the efficiency of boilers.The overall study makes a contribution to a deep understanding of the effect of Ni coating on the growth characteristics of the slag.
文摘Monolithic stoppers play a very important role in continuous casting( short for CC). Sometimes,the stopper slag line is seriously eroded and broken,CC has to pause. The research shows that there are three main reasons which bring severe erosion of monolithic stopper slag line. Firstly,much Fe_2O_3 and MnO in slag react with carbon( C) in the stopper,C is gradually eroded and erosion resistance of the stopper greatly weakens. Secondly,F increase in tundish covering flux will quicken erosion of the stopper slag line. Thirdly, High LOI of tundish covering flux also makes erosion of the stopper slag line speed up. On one hand,CaCO_3 in tundish covering flux decomposes and brings CO_2; on the other hand,minerals with water in tundish covering flux decompose at high temperatures and bring water vapor.Then CO_2 and water vapor react with C in the stopper,C is gradually eroded,aggravating the erosion.
文摘The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative study of similar nature has also been carried out during flux-cored arc weld deposition in globular and spray transfer modes.The effect of pulse parameters has been studied by considering their mean current and arc voltage.The arc characteristics studied by its root diameter,projected diameter and length,and the behavior of metal transfer noted by the metal transfer model and the droplet diameter have been found to vary significantly with the pulse parameters.The observation may help in understanding the arc characteristics with respect to the variation in pulse parameters which may be beneficial in using pulse current FCAW to produce desired weld quality.
文摘In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the optimized mold flux were compared in a comprehensive way by using analytical measures, such as a slag film heat-flow simulator, a thermowire molten flux crystallization tester and an X-ray diffractometer in the laboratory. The results reveal that one of the major reasons for the cracks is the poor heat transfer ability of the original mold flux. However, the optimized mold flux with a high basicity features a high crystallizing rate,low crystallization temperature and low heat-flow density. Therefore, the optimized mold flux is more suitable for casting peritectic steel by the heavy slab continuous caster. The test results show that the slabs produced by using the optimized mold flux had no surface longitudinal crack in four test casts, while the surface longitudinal crack ratio of the slabs produced by using the original mold flux was 5%. The optimized mold flux can effectively prevent slab surface longitudinal cracks from occurring.
文摘Prevention of nitrogen porosity in weld metal deposited with self-shielded flux cored wire with CaF2-TiO2-MgO slag system can be accomplished by using a 'killing agent' such as titanium to react with nitrogen dissolved in the weld metal. The amount of titanium needed to prevent porosity is calculated thermodynamically for various dissolved nitrogen levels. Experimental flux cored wires are used to verify the thermodynamic model. It is concluded that approximately 0.11 wt% titanium in the weld deposit is need to prevent nitrogen porosity when welding without externally applied shielding.
基金supported by National Natural Science Foundation of China(grant number:52036008).
文摘Limestone or quicklime is a necessary flux in the iron ore sintering process.Its production and application process will cause CO_(2) emissions and various environmental pollution,but this has not attracted enough attention.Carbide slag(CS)is a calcium-rich solid waste produced in acetylene production,the harmless disposal of which is still incomplete,resulting in soil and groundwater pollution.This study investigated the granulation characteristics and sintering performance of the sintering mixture with different proportions of CS.The results show that replacing limestone with an appropriate proportion of CS is promising and beneficial to the formation of high-quality bonding phase.When CS accounts for 75%of the total mass of CS and limestone,the tumbler index increases by 8.10%and the comprehensive index decreases only from 100 to 96.16,which is within the acceptable range.The application of CS in iron ore sintering can achieve a clean disposal of it and a considerable carbon emission reduction,as the main component of which is Ca(OH)_(2).
基金This work was supported by the National Natural Science Foundation of China(51874363,U1760202)Natural Science Foundation of Hunan Province(2019JJ40345)Hunan Scientific Technology Projects(2018RS3022,2018WK2051).
文摘The crytallization behavior and melt structure of the CaO-Si0^(2-)B20_(3)-based fluorine-free mold fux were investigated.The results show that the crytallization of the mold fux was first inhibited and then promoted with the increase in Al_(2)0_(3) content from 4 to 12 wt.%.However,it was enhanced by MgO in the range of 2-10 wt.%.The results of Fourier transform infrared spectroscopy and Raman spectroscopy showed that Al_(2)0_(3) worked as a network former in the mold flux melt when its content was in the range of 4-8 wt.%,whereas it worked as the network breaker to provide 0^(2-)when its content was in the range of 8-12 wt.%.In addition,the combined efects from the charge compensation by Mg^(2+)and the network broken by 0^(2-)led to the increase in some typicalT-O-T(AI-O-A1,B-O-B,etc.,)and simpler structural units(Q^(2)(Si),B_^(O-)in the[B0_(2)0^(-)],.etc.)when the MgO content was in the range of 2-6 wt.%.The continuous increase in 0^(2-)provided by the addition of MgO from 6 to 10 wt.%further depolymerized the network of the melt and fnally caused fast crystallizationo.