期刊文献+
共找到326篇文章
< 1 2 17 >
每页显示 20 50 100
Engineering Strategies for Suppressing the Shuttle Effect in Lithium–Sulfur Batteries 被引量:2
1
作者 Jiayi Li Li Gao +7 位作者 Fengying Pan Cheng Gong Limeng Sun Hong Gao Jinqiang Zhang Yufei Zhao Guoxiu Wang Hao Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期187-221,共35页
Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect... Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries. 展开更多
关键词 shuttle effect Designed strategies Li-S battery Lithium polysulfides
下载PDF
VSe_(2)/V_(2)C heterocatalyst with built-in electric field for efficient lithium-sulfur batteries:Remedies polysulfide shuttle and conversion kinetics
2
作者 Yanwei Lv Lina Bai +7 位作者 Qi Jin Siyu Deng Xinzhi Ma Fengfeng Han Juan Wang Lirong Zhang Lili Wu Xitian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期397-409,I0010,共14页
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou... Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries. 展开更多
关键词 Li-S battery shuttle effect Separator modifier VSe_(2)/V_(2)C heterostructure Built-in electric field
下载PDF
Liquid metal in prohibiting polysulfides shuttling in metal sulfides anode for sodium-ion batteries
3
作者 Xiaobo Zheng Xinwei Guan +8 位作者 Xuan Cheng Xiaoning Li Yang Fu Yitong Li Zhi Zheng Weikong Pang Xun Xu Peng Li Tianyi Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期559-567,共9页
Metal sulfides are a class of promising anode materials for sodium-ion batteries(SIBs)owing to their high theoretical specific capacity.Nevertheless,the reactant products(polysulfides)could dissolve into electrolyte,s... Metal sulfides are a class of promising anode materials for sodium-ion batteries(SIBs)owing to their high theoretical specific capacity.Nevertheless,the reactant products(polysulfides)could dissolve into electrolyte,shuttle across separator,and react with sodium anode,leading to severe capacity loss and safety concerns.Herein,for the first time,gallium(Ga)-based liquid metal(LM)alloy is incorporated with MoS_(2)nanosheets to work as an anode in SIBs.The electron-rich,ultrahigh electrical conductivity,and self-healing properties of LM endow the heterostructured MoS_(2)-LM with highly improved conductivity and electrode integrity.Moreover,LM is demonstrated to have excellent capability for the adsorption of polysulfides(e.g.,Na_(2)S,Na_(2)S_(6),and S_(8))and subsequent catalytic conversion of Na_(2)S.Consequently,the MoS_(2)-LM electrode exhibits superior ion diffusion kinetics and long cycling performance in SIBs and even in lithium/potassium-ion battery(LIB/PIB)systems,far better than those electrodes with conventional binders(polyvinylidene difluoride(PVDF)and sodium carboxymethyl cellulose(CMC)).This work provides a unique material design concept based on Ga-based liquid metal alloy for metal sulfide anodes in rechargeable battery systems and beyond. 展开更多
关键词 GalnSn liquid metal alloy MoS_(2) Polysulfides shuttle effects Catalytic conversion Sodium-ion batteries
下载PDF
Enhancing Li cycling coulombic efficiency while mitigating “shuttle effect” of Li-S battery through sustained release of LiNO_(3)
4
作者 Qi Jin Kaixin Zhao +3 位作者 Lili Wu Lu Li Long Kong Xitian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期22-29,共8页
In practical lithium-sulfur batteries(LSBs),the shuttle effect and Li cycling coulombic efficiency(CE) are strongly affected by the physicochemical properties of solid electrolyte interphase(SEI).LiNO_(3) is widely us... In practical lithium-sulfur batteries(LSBs),the shuttle effect and Li cycling coulombic efficiency(CE) are strongly affected by the physicochemical properties of solid electrolyte interphase(SEI).LiNO_(3) is widely used as an additive in electrolytes to build a high-quality SEI,but its self-sacrificial nature limits the ability to mitigate the shuttle effect and stabilize Li anode during long-term cycling.To counteract LiNO_(3) consumption during long-term cycling without using a high initial concentration,inspired by sustainedrelease drugs,we encapsulated LiNO_(3) in lithiated Nafion polymer and added an electrolyte co-solvent(1,1,2,2-tetrafluoroethylene 2,2,2-trifluoromethyl ether) with poor LiNO_(3) solubility to construct highquality and durable F-and N-rich SEI.Theoretical calculations,experiments,multiphysics simulations,and in-situ observations confirmed that the F-and N-rich SEI can modulate lithium deposition behavior and allow persistent repair of SEI during prolonged cycling.Hence,the F-and N-rich SEI improves the Li anode cycling CE to 99.63% and alleviates the shuttle effect during long-term cycling.The lithium anode with sustainable F-and N-rich SEI shows a stable Li plating/stripping over 2000 h at 1 mA cm^(-2).As expected,Li‖S full cells with this SEI achieved a long lifespan of 250 cycles,far exceeding cells with a routine SEI.The Li‖S pouch cell based on F-and N-rich SEI also can achieve a high energy density of about300 Wh kg^(-1) at initial cycles.This strategy provides a novel design for high-quality and durable SEls in LSBs and may also be extendable to other alkali metal batteries. 展开更多
关键词 Lithium-sulfur battery Solid electrolyte interphase LiNO_(3) Coulombic efficiency shuttle effect
下载PDF
A gelatin-based artificial SEI for lithium deposition regulation and polysulfide shuttle suppression in lithium-sulfur batteries 被引量:8
5
作者 Naseem Akhtar Xiaogang Sun +7 位作者 Muhammad Yasir Akram Fakhar Zaman Weikun Wang Anbang Wang Long Chen Hao Zhang Yuepeng Guan Yaqin Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期310-317,I0010,共9页
Lithium-sulfur(Li-S) battery is one of the best candidates for the next-generation energy storage system due to its high theoretical capacity(1675 mA h-1),low cost and environment friendliness.However,lithium(Li) dend... Lithium-sulfur(Li-S) battery is one of the best candidates for the next-generation energy storage system due to its high theoretical capacity(1675 mA h-1),low cost and environment friendliness.However,lithium(Li) dendrites formation and polysulfide shuttle effect are two major challenges that limit the commercialization of Li-S batteries.Here we design a facile bifunctional interlayer of gelatin-based fibers(GFs),aiming to protect the Li anode surface from the dendrites growth and also hinder the polysulfide shuttle effect.We reveal that the 3D structural network of GFs layer with abundant polar sites helps to homogenize Li-ion flux,leading to uniform Li-ion deposition.Meanwhile,the polar moieties also immobilize the lithium polysulfides and protect the Li metal from the side-reaction.As a result,the anodeprotected batteries have shown significantly enhanced performance.A high coulombic efficiency of 96% after 160 cycles has been achieved in the Li-Cu half cells.The Li-Li symmetric cells exhibit a prolonged lifespan for 800 h with voltage hysteresis(10 mV).With the as-prepared GFs layer,the Li-S battery shows approximately 14% higher capacity retention than the pristine battery at 0.5 C after 100 cycles.Our work presents that this gelatin-based bi-functional interlayer provides a viable strategy for the manufacturing of advanced Li-S batteries. 展开更多
关键词 Bifunctional layer Gelatin-based fibers shuttle effect Artificial SEI Lithium-sulfur battery
下载PDF
Cellulose nanofiber separator for suppressing shuttle effect and Li dendrite formation in lithium-sulfur batteries 被引量:7
6
作者 Jingxue Li Liqin Dai +7 位作者 Zhefan Wang Hao Wang Lijing Xie Jingpeng Chen Chong Yan Hong Yuan Hongliang Wang Chengmeng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期736-744,共9页
Lithium-sulfur battery(LSB) has high energy density but is limited by the polysulfides shuttle and dendrite growth during cycling. Herein, a free-standing cellulose nanofiber(CNF) separator is designed and fabricated ... Lithium-sulfur battery(LSB) has high energy density but is limited by the polysulfides shuttle and dendrite growth during cycling. Herein, a free-standing cellulose nanofiber(CNF) separator is designed and fabricated in isopropanol/water suspension through vacuum filtration progress. CNFs with abundant polar oxygen-containing functional groups can chemically immobilize the polysulfides, and suppress the formation of the dendrites by controlling the surface morphology of the SEI on lithium metal in LSB. The isopropanol content in a suspension can fine-tune the pore structure of the membrane to achieve optimal electrochemical performance. The prepared separator displays integrated advantages of an ultrathin thickness(19 μm), lightweight(0.87 mg cm^(-2)), extremely high porosity(98.05%), and decent electrolyte affinity. As a result, the discharge capacity of the LSB with CNF separator at the first and 100 th cycle is 1.4 and 1.3 times that of PP separator, respectively. Our research provides an environmentalfriendly and facile strategy for the preparation of multifunctional separators for LSBs. 展开更多
关键词 CELLULOSE SEPARATOR Lithium-sulfur battery shuttle effect Growth of dendrite
下载PDF
Robust interface layers with redox shuttle reactions suppress the dendrite growth for stable solid-state Li metal batteries 被引量:2
7
作者 Shuaibo Zeng Gowri Manohari Arumugam +5 位作者 Wentao Li Xiahu Liu Xin Li Hai Zhong Fei Guo Yaohua Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期222-229,共8页
Designing a durable lithium metal anode for solid state batteries requires a controllable and uniform deposition of lithium, and the metal lithium layer should maintain a good interface contact with solid state electr... Designing a durable lithium metal anode for solid state batteries requires a controllable and uniform deposition of lithium, and the metal lithium layer should maintain a good interface contact with solid state electrolyte during cycles. In this work, we construct a robust functional interface layer on the modified LiB electrode which considerably improves the electrochemical stability of lithium metal electrode in solid state batteries. It is found that the functional interface layer consisting of polydioxolane, polyiodide ion and Li TFSI effectively restrains the growth of lithium dendrites through the redox shuttle reaction of I-/I3-and maintains a good contact between lithium anode and solid electrolyte during cycles. Benefit from these two advantages, the modified Li-B anode exhibits a remarkable cyclic performance in comparison with those of the bare Li-B anode. 展开更多
关键词 Redox shuttle reaction Robust interface layer Lithium dendrites Long-lasting effect Solid-state batteries
下载PDF
Strategies to suppress the shuttle effect of redox mediators in lithium-oxygen batteries 被引量:1
8
作者 Xinbin Wu Wei Yu +4 位作者 Kaihua Wen Huanchun Wang Xuanjun Wang Ce-Wen Nan Liangliang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期135-149,共15页
Rechargeable lithium-oxygen(Li-O_(2))batteries are the next generation energy storage devices due to their ultrahigh theoretical capacity.Redox mediators(RMs)are widely used as a homogenous electrocatalyst in non-aque... Rechargeable lithium-oxygen(Li-O_(2))batteries are the next generation energy storage devices due to their ultrahigh theoretical capacity.Redox mediators(RMs)are widely used as a homogenous electrocatalyst in non-aqueous Li-O_(2)batteries to enhance their discharge capacity and reduce charge overpotential.However,the shuttle effect of RMs in the electrolyte solution usually leads to corrosion of the Li metal anode and uneven Li deposition on the anode surface,resulting in unwanted consumption of electrocatalysts and deterioration of the cells.It is therefore necessary to take some measures to prevent the shuttle effect of RMs and fully utilize the soluble electrocatalysts.Herein,we summarize the strategies to suppress the RM shuttle effect reported in recent years,including electrolyte additives,protective separators and electrode modification.The mechanisms of these strategies are analyzed and their corresponding requirements are discussed.The electrochemical properties of Li-O_(2)batteries with different strategies are summarized and compared.The challenges and perspectives on preventing the shuttle effect of RMs are described for future study.This review provides guidance for achieving shuttle-free redox mediation and for designing Li-O_(2)cells with a long cycle life,high energy efficiency and highly reversible electrochemical reactions. 展开更多
关键词 Lithium-oxygen battery Redox mediator shuttle effect Electrolyte additive Protective separator
下载PDF
Labyrinth maze-like long travel-reduction of sulfur and polysulfides in micropores of a spherical honeycomb carbon to greatly confine shuttle effects in lithium-sulfur batteries 被引量:3
9
作者 Yanyan Chang Jie Chen +8 位作者 Zhuo Zou Juan Li Chao Wu Yali Jiang Yue Chen Qingxin Zeng Xiaoshui Wu Wei Sun Chang Ming Li 《Materials Reports(Energy)》 2022年第4期54-61,共8页
Polysulfide absorption in a micropore-rich structure has been reported to be capable of efficiently confining the shuttle effect for high-performance lithium-sulfur(Li–S)batteries.Here,a labyrinth maze-like spherical... Polysulfide absorption in a micropore-rich structure has been reported to be capable of efficiently confining the shuttle effect for high-performance lithium-sulfur(Li–S)batteries.Here,a labyrinth maze-like spherical honeycomb-like carbon with micropore-rich structure was synthesized,which is employed as a template host material of sulfur to study the shuttle effects.The results strongly confirm that a diffusion controlled process rather than an absorption resulted surface-controlled process occurs in an even micropore-rich cathode but still greatly inhibits the shuttle effect.Thus,the battery achieves a high initial discharge specific capacity of 1120 mAh g1 at 0.25 C and super cycling stability for 1635 cycles with only 0.035%capacity decay per cycle with 100%Coulombic efficiency.We would like to propose a new mechanism for shuttle effect inhibition in micropores.In terms of the diffusion control process in microporous paths of a labyrinth maze structure,polysulfides experience a long travel to realize continuous reductions of sulfur and polysulfides until formation of the final solid product.This efficiently prevents the polysulfides escaping to electrolyte.The labyrinth maze-like honeycomb structure also offers fast electron transfer and enhanced mass transport as well as robust mechanical strength retaining intact structure for long cycle life.This work sheds lights on new fundamental insights behind the shuttle effects with universal significance while demonstrating prominent merits of a robust labyrinth maze-like structure in high performance cathode for high-performance Li–S batteries. 展开更多
关键词 Lithium-sulfur batteries Labyrinth maze-like spherical honeycomb-like carbon Diffusion-controlled process shuttle effects High performance
下载PDF
Fluorine-Modulated MXene-Derived Catalysts for Multiphase Sulfur Conversion in Lithium-Sulfur Battery
10
作者 Qinhua Gu Yiqi Cao +5 位作者 Junnan Chen Yujie Qi Zhaofeng Zhai Ming Lu Nan Huang Bingsen Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期201-216,共16页
Fluorine owing to its inherently high electronegativity exhibits charge delocalization and ion dissociation capabilities;as a result,there has been an influx of research studies focused on the utilization of fluorides... Fluorine owing to its inherently high electronegativity exhibits charge delocalization and ion dissociation capabilities;as a result,there has been an influx of research studies focused on the utilization of fluorides to optimize solid electrolyte interfaces and provide dynamic protection of electrodes to regulate the reaction and function performance of batteries.Nonetheless,the shuttle effect and the sluggish redox reaction kinetics emphasize the potential bottlenecks of lithium-sulfur batteries.Whether fluorine modulation regulate the reaction process of Li-S chemistry?Here,the TiOF/Ti_(3)C_(2)MXene nanoribbons with a tailored F distribution were constructed via an NH4F fluorinated method.Relying on in situ characterizations and electrochemical analysis,the F activates the catalysis function of Ti metal atoms in the consecutive redox reaction.The positive charge of Ti metal sites is increased due to the formation of O-Ti-F bonds based on the Lewis acid-base mechanism,which contributes to the adsorption of polysulfides,provides more nucleation sites and promotes the cleavage of S-S bonds.This facilitates the deposition of Li_(2)S at lower overpotentials.Additionally,fluorine has the capacity to capture electrons originating from Li_(2)S dissolution due to charge compensation mechanisms.The fluorine modulation strategy holds the promise of guiding the construction of fluorine-based catalysts and facilitating the seamless integration of multiple consecutive heterogeneous catalytic processes. 展开更多
关键词 CATALYSIS FLUORINATION MXene Lithium-sulfur battery shuttle effect
下载PDF
Recent advances in producing hollow carbon spheres for use in sodium−sulfur and potassium−sulfur batteries
11
作者 QI Zi-xin LUO Sai-nan +4 位作者 RUAN Jia-feng YUAN Tao PANG Yue-peng YANG Jun-he ZHENG Shi-you 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期824-843,共20页
Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,t... Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,their development is restricted by the shuttling of polysulfides,large volume expansion and poor conductivity.To overcome these obstacles,an effective approach is to use carbon-based materials with abundant space for the sulfur that has sulfiphilic sites to immobilize it,and a high electrical conductivity.Hollow carbon spheres(HCSs)with a controllable structure and composition are promising for this purpose.We consider recent progress in optimizing the electrochemical performance of Na-/K-S batteries by using these materials.First,the advantages of HCSs,their synthesis methods,and strategies for preparing HCSs/sulfur composite materials are reviewed.Second,the use of HCSs in Na-/K-S batteries,along with mechanisms underlying the resulting performance improvement,are discussed.Finally,prospects for the further development of HCSs for metal−S batteries are presented. 展开更多
关键词 Hollow carbon sphere Sodium-sulfur batteries shuttle effect Potassium-sulfur batteries Electrochemical performance
下载PDF
Phosphorylated cellulose nanofibers establishing reliable ion-sieving barriers for durable lithium-sulfur batteries
12
作者 Zihao Li Pengsen Qian +3 位作者 Hongyang Li He Xiao Jun Chen Gaoran Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期619-628,共10页
The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineer... The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineered to establish an ion-sieving barrier against polysulfide shuttling and thereby improve battery performance.The phosphorylation,involving the grafting of phosphate groups onto the cellulose backbone,imparts an exceptional electronegativity that repels the polysulfide anions from penetrating through the separator.Moreover,the electrolyte wettability and Li^(+)transfer can be significantly promoted by the polar nature of pCNF and the facile Li^(+)disassociation.As such,rational ion management is realized,contributing to enhanced reversibility in both sulfur and lithium electrochemistry.As a result,Li-S cells equipped with the self-standing pCNF separator demonstrate outstanding long-term cyclability with a minimum fading rate of 0.013%per cycle over 1000 cycles at 1 C,and a decent areal capacity of 5.37 mA h cm^(-2) even under elevated sulfur loading of 5.0 mg cm^(-2) and limited electrolyte of 6.0 mL g^(-1).This work provides a facile and effective pathway toward the well-tamed shuttle effect and highly durable Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries Cellulose Phosphorylation Ion-sieving shuttle effect
下载PDF
Tuning the solubility of polysulfides for constructing practical lithium-sulfur battery
13
作者 Jiapeng Li Jianlong Cong +3 位作者 Haijin Ji Ting Shi Lixia Yuan Yunhui Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期611-617,I0013,共8页
Li-S batteries are regarded as one of the most promising candidates for next-generation battery systems with high energy density and low cost.However,the dissolution-precipitation reaction mechanism of the sulfur(S)ca... Li-S batteries are regarded as one of the most promising candidates for next-generation battery systems with high energy density and low cost.However,the dissolution-precipitation reaction mechanism of the sulfur(S)cathode enhances the kinetics of the redox processes of the insulating sulfu r,which also arouses the notorious shuttle effect,leading to serious loss of S species and corrosion of Li anode.To get a balance between the shuttle restraining and the kinetic property,a combined strategy of electrolyte regulation and cathode modification is proposed via introducing 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoroprpyl ether(HFE)instead of 1,2-dimethoxyethane(DME),and SeS_(7)instead of S_8.The introduction of HFE tunes the solvation structure of the LiTFSI and the dissolution of intermediate polysulfides with Se doping(LiPSSes),and optimize the interface stability of the Li anode simultaneously.The minor Se substitution compensates the decrease in kinetic due to the decreased solubility of LiPSs.In this way,the Li-SeS_(7)batteries deliver a reversible capacity of 1062 and 1037 mAh g^(-1)with 2.0 and 5.5 mg SeS_(7)cm^(-2)loading condition,respectively.Besides,an electrolyte-electrode loading model is established to explain the relationship between the optimal electrolyte and cathode loading.It makes more sense to guide the electrolyte design for practical Li-S batteries. 展开更多
关键词 Li-S batteries Lithium polysulfides SOLUBILITY shuttle effect Interface Se doping
下载PDF
Enhancing Li-S battery performance via functional polymer binders for polysulfide inhibition
14
作者 Jinpeng Jian Qian Chen +6 位作者 Hao Sun Rui Li Yaolin Hou Yulong Liu Jia Liu Haiming Xie Jiefang Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期228-236,I0005,共10页
The commercialization of lithium-sulfur(Li-S)batteries faces several challenges,including poor conductivity,unexpected volume expansion,and continuous sulfur loss from the cathode due to redox shuttling.In this study,... The commercialization of lithium-sulfur(Li-S)batteries faces several challenges,including poor conductivity,unexpected volume expansion,and continuous sulfur loss from the cathode due to redox shuttling.In this study,we introduce a novel polymer via a simple cross-linking between poly(ether-thioureas)(PETU)and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)as a bifunctio nal binder for Li-S batteries(devotes as"PPTU").Compared to polyvinylidene fluoride(PVDF),as-prepared PPTU exhibits significantly higher electrical conductivity,facilitating electrochemical reactions.Additionally,PPTU demonstrates effective adsorption of lithium polysulfides,leading to improved cycling stability by suppressing the shuttling effect.We investigate this behavior by monitoring morphological changes at the cell interface using synchrotron X-ray tomography.Cells with PPTU binders exhibit remarkable rate performance,desired reversibility,and excellent cycling stability even under stringent bending and twisting conditions.Our work represents promising progress in functional polymer binder development for Li-S batteries. 展开更多
关键词 Li-S batteries Bifunctional binders Electrode conductivity shuttle effect
下载PDF
Stable immobilization of lithium polysulfides using three-dimensional ordered mesoporous Mn_(2)O_(3) as the host material in lithium-sulfur batteries
15
作者 Sung Joon Park Yun Jeong Choi +6 位作者 Hyun-seung Kim Min Joo Hong Hongjun Chang Janghyuk Moon Young-Jun Kim Junyoung Mun Ki Jae Kim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期99-112,共14页
Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the c... Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs. 展开更多
关键词 host material lithium-sulfur battery ordered mesoporous structure shuttle effect transition-metal oxides
下载PDF
Chloride ion battery:A new emerged electrochemical system for next-generation energy storage
16
作者 Shulin Chen Lu Wu +3 位作者 Yu Liu Peng Zhou Qinyou An Liqiang Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期154-168,I0004,共16页
In the scope of developing new electrochemical concepts to build batteries with high energy density,chloride ion batteries(CIBs)have emerged as a candidate for the next generation of novel electrochemical energy stora... In the scope of developing new electrochemical concepts to build batteries with high energy density,chloride ion batteries(CIBs)have emerged as a candidate for the next generation of novel electrochemical energy storage technologies,which show the potential in matching or even surpassing the current lithium metal batteries in terms of energy density,dendrite-free safety,and elimination of the dependence on the strained lithium and cobalt resources.However,the development of CIBs is still at the initial stage with unsatisfactory performance and several challenges have hindered them from reaching commercialization.In this review,we examine the current advances of CIBs by considering the electrode material design to the electrolyte,thus outlining the new opportunities of aqueous CIBs especially combined with desalination,chloride redox battery,etc.With respect to the developing road of lithium ion and fluoride ion batteries,the possibility of using solid-state chloride ion conductors to replace liquid electrolytes is tentatively discussed.Going beyond,perspectives and clear suggestions are concluded by highlighting the major obstacles and by prescribing specific research topics to inspire more efforts for CIBs in large-scale energy storage applications. 展开更多
关键词 Chloride ion battery Anion shuttling Conversion reaction Chloride redox
下载PDF
Sulfhydryl-functionalized COF-based electrolyte strengthens chemical affinity toward polysulfides in quasi-solid-state Li-S batteries
17
作者 Linnan Bi Jie Xiao +9 位作者 Yaochen Song Tianrui Sun Mingkai Luo Yi Wang Peng Dong Yingjie Zhang Yao Yao Jiaxuan Liao Sizhe Wang Shulei Chou 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期221-234,共14页
For lithium-sulfur batteries(Li-S batteries),a high-content electrolyte typically can exacerbate the shuttle effect,while a lean electrolyte may lead to decreased Li-ion conductivity and reduced catalytic conversion e... For lithium-sulfur batteries(Li-S batteries),a high-content electrolyte typically can exacerbate the shuttle effect,while a lean electrolyte may lead to decreased Li-ion conductivity and reduced catalytic conversion efficiency,so achieving an appropriate electrolyte-to-sulfur ratio(E/S ratio)is essential for improving the battery cycling efficiency.A quasi-solid electrolyte(COF-SH@PVDF-HFP)with strong adsorption and high catalytic conversion was constructed for in situ covalent organic framework(COF)growth on highly polarized polyvinylidene fluoride-hexafluoropropylene(PVDF-HFP)fibers.COF-SH@PVDF-HFP enables efficient Li-ion conductivity with low-content liquid electrolyte and effectively suppresses the shuttle effect.The results based on in situ Fourier-transform infrared,in situ Raman,UV–Vis,X-ray photoelectron,and density functional theory calculations confirmed the high catalytic conversion of COF-SH layer containing sulfhydryl and imine groups for the lithium polysulfides.Lithium plating/stripping tests based on Li/COF-SH@PVDF-HFP/Li show excellent lithium compatibility(5 mAh cm^(-2) for 1400 h).The assembled Li-S battery exhibits excellent rate(2 C 688.7 mAh g^(-1))and cycle performance(at 2 C of 568.8 mAh g^(-1) with a capacity retention of 77.3%after 800 cycles).This is the first report to improve the cycling stability of quasi-solid-state Li-S batteries by reducing both the E/S ratio and the designing strategy of sulfhydryl-functionalized COF for quasi-solid electro-lytes.This process opens up the possibility of the high performance of solid-state Li-S batteries. 展开更多
关键词 lithium-sulfur batteries low electrolyte-to-sulfur ratio polysulfide shuttle PVDF-HFP/COF
下载PDF
NbN quantum dots anchored hollow carbon nanorods as efficient polysulfide immobilizer and lithium stabilizer for Li-S full batteries
18
作者 Fei Ma Zhuo Chen +9 位作者 Katam Srinivas Ziheng Zhang Yu Wu Dawei Liu Hesheng Yu Yue Wang Xinsheng Li Ming-qiang Zhu Qi Wu Yuanfu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期260-271,I0007,共13页
The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispers... The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispersed Nb N quantum dots anchored on nitrogen-doped hollow carbon nanorods(NbN@NHCR)are elaborately developed as efficient Li PSs immobilizer and Li stabilizer for high-performance Li-S full batteries.Density functional theory(DFT)calculations and experimental characterizations demonstrate that the sulfiphilic and lithiophilic NbN@NHCR hybrid can not only efficiently immobilize the soluble Li PSs and facilitate diffusion-conversion kinetics for alleviating the shuttling effect,but also homogenize the distribution of Li+ions and regulate uniform Li deposition for suppressing Li-dendrite growth.As a result,the assembled Li-S full batteries(NbN@NHCR-S||Nb N@NHCR-Li)deliver excellent long-term cycling stability with a low decay rate of 0.031%per cycle over 1000 cycles at high rate of 2 C.Even at a high S loading of 5.8 mg cm^(-2)and a low electrolyte/sulfur ratio of 5.2μL mg^(-1),a large areal capacity of 6.2 mA h cm^(-2)can be achieved in Li-S pouch cell at 0.1 C.This study provides a new perspective via designing a dual-functional sulfiphilic and lithiophilic hybrid to address serious issues of the shuttle effect of S cathode and dendrite growth of Li anode. 展开更多
关键词 Dual-functional host NbN quantum dots shuttle effect Dendrite-free Li anode Li-S full batteries
下载PDF
Interpenetrating network-reinforced gel polymer electrolyte for ultra-stable lithium−iodine batteries
19
作者 Ying Jiang Peng Huang +5 位作者 Minman Tong Bingxin Qi Tao Sun Zhongyun Xian Wen Yan Chao Lai 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期234-247,共14页
Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-... Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-I_(2) batteries need to be tackled.Herein,the interfacial reactions on the Li anode and I_(2) cathode have been effectively optimized by employing a well-designed gel polymer electrolyte strengthened by cross-linked Ti-O/Si-O(GPETS).The interpenetrating network-reinforced GPETS with high ionic conductivity(1.88×10^(-3)S cm^(-1)at 25℃)and high mechanical strength endows uniform Li deposition/stripping over 1800 h(at 1.0mA cm^(-2),with a plating capacity of 3.0mAh cm^(-2)).Moreover,the GPETS abundant in surface hydroxyls is capable of capturing soluble polyiodides at the interface and accelerating their conversion kinetics,thus synergistically mitigating the shuttle effect.Benefiting from these properties,the use of GPETS results in a high capacity of 207 mAh g^(-1)(1 C)and an ultra-low fading rate of 0.013%per cycle over 2000 cycles(5 C).The current study provides new insights into advanced electrolytes for Li-I_(2) batteries. 展开更多
关键词 electrode/electrolyte interface gel polymer electrolytes lithium dendrites lithium−iodine batteries polyiodide shuttle
下载PDF
Advanced preparation and application of bimetallic materials in lithium-sulfur batteries:A review
20
作者 Yongbing Jin Nanping Deng +4 位作者 Yanan Li Hao Wang Meiling Zhang Weimin Kang Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期469-512,I0011,共45页
Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natu... Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natural reserves,low cost of elemental sulfur,and environmentally friendly properties.However,several challenges impede its commercialization including low conductivity of sulfur itself,the severe“shuttle effect”caused by lithium polysulfides(LiPSs)during charge–discharge processes,volume expansion effects and sluggish reaction kinetics.As a solution,polar metal particles and their compounds have been introduced as the main hosts for sulfur cathode due to their robust catalytic activity and adsorption capability,effectively suppressing the“shuttle effect”of Li PSs.Bimetallic alloys and their compounds with multi-functional properties exhibit remarkable electrochemical performance more readily when compared to single-metal materials.Well-designed bimetallic materials demonstrate larger specific surface areas and richer active sites,enabling simultaneous high adsorption capability and strong catalytic properties.The synergistic effect of the“adsorption-catalysis”sites accelerates the adsorptiondiffusion-conversion process of Li PSs,ultimately achieving a long-lasting Li-S battery.Herein,the latest progress and performance of bimetallic materials in cathodes,separators,and interlayers of Li-S batteries are systematically reviewed.Firstly,the principles and challenges of Li-S batteries are briefly analyzed.Then,various mechanisms for suppressing“shuttle effects”of Li PSs are emphasized at the microscale.Subsequently,the performance parameters of various bimetallic materials are comprehensively summarized,and some improvement strategies are proposed based on these findings.Finally,the future prospects of bimetallic materials are discussed,with the hope of providing profound insights for the rational design and manufacturing of high-performance bimetallic materials for LSBs. 展开更多
关键词 Bimetallic materials Lithium-sulfur batteries Effectively suppress shuttle effect of LiPSs Significantly improve reaction kinetics Exceptionally long lifespan
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部