Deposition of fluvial sandbodies is controlled mainly by characteristics of the system, such as the rate of avulsion and aggradation of the fluvial channels and their geometry. The impact and the interaction of these ...Deposition of fluvial sandbodies is controlled mainly by characteristics of the system, such as the rate of avulsion and aggradation of the fluvial channels and their geometry. The impact and the interaction of these parameters have not received adequate attention. In this paper, the impact of geological uncertainty resulting from the interpretation of the fluvial geometry, maximum depth of channels, and their avulsion rates on primary production is studied for fluvial reservoirs. Several meandering reservoirs were generated using a process-mimicking package by varying several con- trolling factors. Simulation results indicate that geometrical parameters of the fluvial channels impact cumulative pro- duction during primary production more significantly than their avulsion rate. The most significant factor appears to be the maximum depth of fluvial channels. The overall net-to-gross ratio is closely correlated with the cumulative oil production of the field, but cumulative production values for individual wells do not appear to be correlated with the local net-to-gross ratio calculated in the vicinity of each well. Connectedness of the sandbodies to each well, defined based on the minimum time-of-flight from each block to the well, appears to be a more reliable indicator of well-scale production.展开更多
Fluvial processes comprise water flow,sediment transport and bed evolution,which normally feature distinct time scales.The time scales of sediment transport and bed deformation relative to the flow essentially measure...Fluvial processes comprise water flow,sediment transport and bed evolution,which normally feature distinct time scales.The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity region in line with local flow scenario and the bed deforms in comparison with the flow,which literally dictates if a capacity based and/or decoupled model is justified.This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed,with bed load and suspended load transport,respectively.It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable,whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity.Physically coupled modelling is critical for fluvial processes characterized by rapid bed variation.Applications are outlined on very active bed load sediment transported by flash floods and landslide dam break floods.展开更多
文摘Deposition of fluvial sandbodies is controlled mainly by characteristics of the system, such as the rate of avulsion and aggradation of the fluvial channels and their geometry. The impact and the interaction of these parameters have not received adequate attention. In this paper, the impact of geological uncertainty resulting from the interpretation of the fluvial geometry, maximum depth of channels, and their avulsion rates on primary production is studied for fluvial reservoirs. Several meandering reservoirs were generated using a process-mimicking package by varying several con- trolling factors. Simulation results indicate that geometrical parameters of the fluvial channels impact cumulative pro- duction during primary production more significantly than their avulsion rate. The most significant factor appears to be the maximum depth of fluvial channels. The overall net-to-gross ratio is closely correlated with the cumulative oil production of the field, but cumulative production values for individual wells do not appear to be correlated with the local net-to-gross ratio calculated in the vicinity of each well. Connectedness of the sandbodies to each well, defined based on the minimum time-of-flight from each block to the well, appears to be a more reliable indicator of well-scale production.
基金supported by the National Natural Science Foundation of China (10932012 and 10972164)State Key Basic Research and Development Program (973) of China (2007CB714106)
文摘Fluvial processes comprise water flow,sediment transport and bed evolution,which normally feature distinct time scales.The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity region in line with local flow scenario and the bed deforms in comparison with the flow,which literally dictates if a capacity based and/or decoupled model is justified.This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed,with bed load and suspended load transport,respectively.It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable,whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity.Physically coupled modelling is critical for fluvial processes characterized by rapid bed variation.Applications are outlined on very active bed load sediment transported by flash floods and landslide dam break floods.