Net heat flux,sea surface temperature(SST),and sea surface wind in the northern Indian Ocean were investigated using the TropFlux,ERA5,and J-OFURO3 datasets and correlation analysis,power spectrum analysis,and singula...Net heat flux,sea surface temperature(SST),and sea surface wind in the northern Indian Ocean were investigated using the TropFlux,ERA5,and J-OFURO3 datasets and correlation analysis,power spectrum analysis,and singular value decomposition(SVD)methods,respectively.The relationships between net heat flux,SST,and sea surface winds were determined.The coupled modes of net heat flux and wind have been found to explain the SST variations in the Indian Ocean basin and the generation mechanism of the Indian Ocean Dipole(IOD).The correlation between net heat flux and wind is strongly negative.The SST lags the net heat flux and wind by approximately one month and has strong positive and negative correlations,respectively.The correlation between net heat flux and wind in the northern Indian Ocean is not only seasonal but also regionally dependent on seasonal variations.Using the SVD method,the important role of net heat flux in local sea-air interactions is discussed and identified as the initial perturbation that triggers the SST anomalies in the Southeast Indian Ocean,and the areas with key sea-air interactions and the generation mechanisms of the local sea-air interactions that form the IOD are determined.展开更多
基金supported by Institut de Recherche pour le Développement(IRD,France)(ESSO-INCOIS-Indian National Centre for Ocean Information Services)funded by the Specialized in Global Change and Sea-Air Interactions and Special Projects-Study on the Mechanism of the Influence of Ocean Mixing on Leapfrog and the Tianjin Key Laboratory of Marine Meteorology 2020 Open Fund Project(No.2020TKLOMZD01)Large-Scale Wave Glider Platform Development
文摘Net heat flux,sea surface temperature(SST),and sea surface wind in the northern Indian Ocean were investigated using the TropFlux,ERA5,and J-OFURO3 datasets and correlation analysis,power spectrum analysis,and singular value decomposition(SVD)methods,respectively.The relationships between net heat flux,SST,and sea surface winds were determined.The coupled modes of net heat flux and wind have been found to explain the SST variations in the Indian Ocean basin and the generation mechanism of the Indian Ocean Dipole(IOD).The correlation between net heat flux and wind is strongly negative.The SST lags the net heat flux and wind by approximately one month and has strong positive and negative correlations,respectively.The correlation between net heat flux and wind in the northern Indian Ocean is not only seasonal but also regionally dependent on seasonal variations.Using the SVD method,the important role of net heat flux in local sea-air interactions is discussed and identified as the initial perturbation that triggers the SST anomalies in the Southeast Indian Ocean,and the areas with key sea-air interactions and the generation mechanisms of the local sea-air interactions that form the IOD are determined.