Based on flux-based formulation, a nodeless variable element method is developed to analyze two-dimensional steady-state and transient heat transfer problems. The nodeless variable element employs quadratic interpolat...Based on flux-based formulation, a nodeless variable element method is developed to analyze two-dimensional steady-state and transient heat transfer problems. The nodeless variable element employs quadratic interpolation functions to provide higher solution accuracy without necessity to actually generate additional nodes. The flux-based formulation is applied to reduce the complexity in deriving the finite element equations as compared to the conventional finite element method, The solution accuracy is further improved by implementing an adaptive meshing technique to generaie finite element mesh that can adapt and move along corresponding to the solution behavior. The technique generates small elements in the regions of steep solution gradients to provide accurate solution, and meanwhile it generates larger elements in the other regions where the solution gradients are slight to reduce the computational time and the computer memory. The effectiveness of the combined procedure is demonstrated by heat transfer problems that have exact solutions. These problems tire: (a) a steady-state heat conduction analysis in a square plate subjected to a highly localized surface heating, and (b) a transient heat conduction analysis in a long plate subjected to moving heat source.展开更多
<div style="text-align:justify;"> There are 158 sampling points to be set up in the Pearl River delta economic region. The collecting period is mostly one year, namely, from July 2007 to July 2008. The...<div style="text-align:justify;"> There are 158 sampling points to be set up in the Pearl River delta economic region. The collecting period is mostly one year, namely, from July 2007 to July 2008. The eight heavy metal elements of Cr, Ni, Cu, Pb, Zn, As, Hg, and Cd in 474 dry and wet deposition samples were tested in terms of the standard procedures. Their average annual fluxes have no obvious difference between dry deposition and wet deposition. So these elements might be at an equilibrium or quasi-equilibrium state between dry deposition and wet deposition. </div>展开更多
A nodeless variable element method with the fluxbased formulation is developed to analyze two-dimensional thermal-structural problems. The nodeless variable formula- tion provides accurate temperature distributions to...A nodeless variable element method with the fluxbased formulation is developed to analyze two-dimensional thermal-structural problems. The nodeless variable formula- tion provides accurate temperature distributions to yield more accurate thermal stress solutions. The flux-based formulation is used to reduce the complexity in deriving the finite element equations as compared to the conventional finite element method. The solution accuracy is further improved by implementing an adaptive meshing technique to generate finite element meshes that can adapt and move along with the transient solution behavior. A version of a nearly optimal element size determination is proposed to provide high convergence rate of the predicted solutions. The combined procedure is evaluated by solving several thermal, structural, and thermal stress problems.展开更多
Our aim in this paper is to interest retinal eye specialists in preventing dry macula degeneration by a special flurry vector field through open or closed curved surfaces. The flux of vector fields through surfaces is...Our aim in this paper is to interest retinal eye specialists in preventing dry macula degeneration by a special flurry vector field through open or closed curved surfaces. The flux of vector fields through surfaces is based on vector element area and volume element. Therefore, we explain a few geometrical derivations of area and volume elements in curved orthogonal coordinate systems. We hope that by derivation of a spatial vector field flurry against drusen through open or closed surfaces due to the Gauss theorem might select drusen under eye retina cells without destroying the cells and prevent macula degeneration. A changed flurry of a magnetic or electric vector field through a closed line causes an electric or magnetic vector field on the surface closed by the line. We also hope that derivation by Stokes’ and Greens’ theorems, with the help of iron, might help eye cells to get in life.展开更多
The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the tw...The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet.展开更多
During the discharging of Tokamak devices, interactions between the core plasma and plasma-facing components (PFCs) may cause exorbitant heat deposition in the latter. This poses a grave threat to the lifetimes of PFC...During the discharging of Tokamak devices, interactions between the core plasma and plasma-facing components (PFCs) may cause exorbitant heat deposition in the latter. This poses a grave threat to the lifetimes of PFCs materials. An infrared (IR) diagnostic system consisting of an IR camera and an endoscope was installed on an Experimental Advanced Superconducting Tokamak (EAST) to monitor the surface temperature of the lower divertor target plate (LDTP) and to calculate the corresponding heat flux based on its surface temperature and physical structure, via the finite element method. First, the temperature obtained by the IR camera was calibrated against the temperature measured by the built-in thermocouple of EAST under baking conditions to determine the true temperature of the LDTP. Next, based on the finite element method, a target plate model was built and a discretization of the modeling domain was carried out. Then, a heat conduction equation and boundary conditions were determined. Finally, the heat flux was calculated. The new numerical tool provided results similar to those for DFLUX;this is important for future work on related physical processes and heat flux control.展开更多
In order to transfer the heat from the armor to the coolant, tungsten has to be connected with a copper heat sink. The joint technology is the most critical issue for manufacturing plasma facing components. Consequent...In order to transfer the heat from the armor to the coolant, tungsten has to be connected with a copper heat sink. The joint technology is the most critical issue for manufacturing plasma facing components. Consequently, the reliability of the joints should be verified by a great number of high-heat-flux (HHF) tests to simulate the real load conditions. W/Cu brazed joint technology with sliver free filler metal CuMnNi has been developed at Southwestern Institute of Physics (SWIP). Screening and thermal fatigue tests of one small-scale fiat tile W/CuCrZr mockup were performed on a 60 kW electron-beam Material testing scenario (EMS-60) constructed recently at SWIP. The module successfully survived screening test with the absorbed power density (Pabs) of 2 MW/m2 to 10 MW/m2 and the following 1000 cycles at Pabs of 7.2 MW/m2 without hot spots and overheating zones during the whole test campaign. Metallurgy and SEM observations did not find any cracks at both sides and the interface, indicating a good bonding of W and CuCrZr alloy. In addition, finite element simulations by ANSYS 12.0 under experimental load conditions were performed and compared with experimental results.展开更多
A dynamic box model was applied to study the characteristics of biogeochemical cycling of PO<sub>4</sub>-P,NO<sub>3</sub>-N,AOU,POC and PON in the southern Taiwan Strait region based on field d...A dynamic box model was applied to study the characteristics of biogeochemical cycling of PO<sub>4</sub>-P,NO<sub>3</sub>-N,AOU,POC and PON in the southern Taiwan Strait region based on field data of the"Minnan Taiwan Bank Fishing Ground Upwelling Ecosystem Study" during the period of Dec.1987-Nov.1988.According to the unique hydrological and topographical features of the region,six boxesand three layers were considered in the model.The variation rates and fluxes of elements induced by hor-izontal current,upwelling,by diffusion,sinking of particles and biogeochemical processes were estimatedrespectively.Results further confirmed that upwellings had important effects in this region.Thenearshore upwelling areas had net input fluxes of nutrients brought by upwelling water,also had high de-pletion rates of nutrients and production rates of particulate organic matter and dissolved oxygen.Theabnormal net production of nutrients in the middle layer(10-30m) indicated the important role of bacte-ria in this high production region.展开更多
The magnetic field distribution characteristics of surface cracks with various widths are discussed based on finite element (FEM) results. The crack depth was 0.20 mm, the width range was from 0.02 to 1.00 mm. The res...The magnetic field distribution characteristics of surface cracks with various widths are discussed based on finite element (FEM) results. The crack depth was 0.20 mm, the width range was from 0.02 to 1.00 mm. The results showed that crack width and lift-off (the distance between surface and sensor) will influence signals. Discussed in this paper is the influence of various lift-off parameters on the peak to peak values of the normal component in magnetic flux leakage testing. The effects can be applied to evaluate surface breaking cracks of different widths and depths. An idea is presented to smooth narrow, sharp crack tips using alternating current (AC) field magnetization.展开更多
A novel high-frequency and high power density planar insulated core transformer(PICT) applied to high voltage DC generator is introduced. PICT's operating principle and fundamental configuration are described,and ...A novel high-frequency and high power density planar insulated core transformer(PICT) applied to high voltage DC generator is introduced. PICT's operating principle and fundamental configuration are described,and preliminary experimental results in self-designed PICT apparatus are presented. Emphatically, magnetic leakage flux(MFL) giving rise to the output voltage drop is analyzed in detail both theoretically and by finite element method(FEM). Showing good consistency with experimental result, FEM simulation is considered to be practicable in physical design of PICT. To cancel out leakage inductance and improve the voltage uniformity,compensation capacitor is adopted and experimental verification is also presented. All shows satisfactory results.展开更多
The static characteristics of an axial-flux permanentmagnet( AFPM) machine with coreless stator were investigated.Two-dimensional analytical method for prediction of the no-load magnetic field in the AFPM machine with...The static characteristics of an axial-flux permanentmagnet( AFPM) machine with coreless stator were investigated.Two-dimensional analytical method for prediction of the no-load magnetic field in the AFPM machine with coreless stator was derived. Electromotive force( EMF) and axial attraction force were deduced from the analytical method. These values obtained from analytical method were compared with those from finite element method( FEM) and agree well. Finally,a prototype was built for experimental validation and back EMF was measured. The results confirmed the validity of the proposed analytical method.展开更多
Neutron activation analysis technique of the Gd2O2S:М scintillation ceramics was developed. The concentrations of 15 trace, minor and major elements (As, Ce, Co, Cr, Cs, Eu, Fe, La, Sc, Tb, Zn, Zr, Pr, Gd, Na) have b...Neutron activation analysis technique of the Gd2O2S:М scintillation ceramics was developed. The concentrations of 15 trace, minor and major elements (As, Ce, Co, Cr, Cs, Eu, Fe, La, Sc, Tb, Zn, Zr, Pr, Gd, Na) have been measured with the instrumental neutron activation analysis of the Gd2O2S:Pr sample. The concentrations range of the determined elements is from 3 × 10-8 to 2.0% in mass. The determination limit of the elements was calculated to be (0.6 - 1.3 × 10-8% in mass).展开更多
Two hundred and seven rain events from April to October 2012 were collected in Carmen Island, Campeche, Mexico, and the concentration of 8 major ions with the pH of the rainwater was analyzed. Chemical composition var...Two hundred and seven rain events from April to October 2012 were collected in Carmen Island, Campeche, Mexico, and the concentration of 8 major ions with the pH of the rainwater was analyzed. Chemical composition variations as a result of seasonal patterns, meteorological conditions, and mixed local and regional sources contribution were assessed. In spite of the fact that nitrate and sulfate levels were higher than background hemispheric values, the average pH values were almost neutral. Carmen Island was under the influence of both, local and long-range transported emissions. Chemical composition showed a dilution effect as a result of the monthly rainfall amount. Ca2+ and Na+ were the most abundant ions, and these ions acted as acid neutralizers and buffered the acidity of the rain, suggesting that marine and crustal aerosols played an important role in the acid-base interactions. Wet deposition fluxes obtained were compared with reference values proposed as critical loads, fluxes obtained in this study did not exceed the critical values reported for sensitive ecosystems in Europe, indicating that this site has yet enough capacity to support acidity, nitrogen and sulfur deposition. However, it is necessary to obtain reference values characteristics for tropical regions.展开更多
The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connec...The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.展开更多
文摘Based on flux-based formulation, a nodeless variable element method is developed to analyze two-dimensional steady-state and transient heat transfer problems. The nodeless variable element employs quadratic interpolation functions to provide higher solution accuracy without necessity to actually generate additional nodes. The flux-based formulation is applied to reduce the complexity in deriving the finite element equations as compared to the conventional finite element method, The solution accuracy is further improved by implementing an adaptive meshing technique to generaie finite element mesh that can adapt and move along corresponding to the solution behavior. The technique generates small elements in the regions of steep solution gradients to provide accurate solution, and meanwhile it generates larger elements in the other regions where the solution gradients are slight to reduce the computational time and the computer memory. The effectiveness of the combined procedure is demonstrated by heat transfer problems that have exact solutions. These problems tire: (a) a steady-state heat conduction analysis in a square plate subjected to a highly localized surface heating, and (b) a transient heat conduction analysis in a long plate subjected to moving heat source.
文摘<div style="text-align:justify;"> There are 158 sampling points to be set up in the Pearl River delta economic region. The collecting period is mostly one year, namely, from July 2007 to July 2008. The eight heavy metal elements of Cr, Ni, Cu, Pb, Zn, As, Hg, and Cd in 474 dry and wet deposition samples were tested in terms of the standard procedures. Their average annual fluxes have no obvious difference between dry deposition and wet deposition. So these elements might be at an equilibrium or quasi-equilibrium state between dry deposition and wet deposition. </div>
文摘A nodeless variable element method with the fluxbased formulation is developed to analyze two-dimensional thermal-structural problems. The nodeless variable formula- tion provides accurate temperature distributions to yield more accurate thermal stress solutions. The flux-based formulation is used to reduce the complexity in deriving the finite element equations as compared to the conventional finite element method. The solution accuracy is further improved by implementing an adaptive meshing technique to generate finite element meshes that can adapt and move along with the transient solution behavior. A version of a nearly optimal element size determination is proposed to provide high convergence rate of the predicted solutions. The combined procedure is evaluated by solving several thermal, structural, and thermal stress problems.
文摘Our aim in this paper is to interest retinal eye specialists in preventing dry macula degeneration by a special flurry vector field through open or closed curved surfaces. The flux of vector fields through surfaces is based on vector element area and volume element. Therefore, we explain a few geometrical derivations of area and volume elements in curved orthogonal coordinate systems. We hope that by derivation of a spatial vector field flurry against drusen through open or closed surfaces due to the Gauss theorem might select drusen under eye retina cells without destroying the cells and prevent macula degeneration. A changed flurry of a magnetic or electric vector field through a closed line causes an electric or magnetic vector field on the surface closed by the line. We also hope that derivation by Stokes’ and Greens’ theorems, with the help of iron, might help eye cells to get in life.
文摘The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet.
基金supported by the National Natural Science Foundation of China(Nos.51505120 and 11105028)the National Magnetic Confinement Fusion Science Program of China(No.2015GB102004)
文摘During the discharging of Tokamak devices, interactions between the core plasma and plasma-facing components (PFCs) may cause exorbitant heat deposition in the latter. This poses a grave threat to the lifetimes of PFCs materials. An infrared (IR) diagnostic system consisting of an IR camera and an endoscope was installed on an Experimental Advanced Superconducting Tokamak (EAST) to monitor the surface temperature of the lower divertor target plate (LDTP) and to calculate the corresponding heat flux based on its surface temperature and physical structure, via the finite element method. First, the temperature obtained by the IR camera was calibrated against the temperature measured by the built-in thermocouple of EAST under baking conditions to determine the true temperature of the LDTP. Next, based on the finite element method, a target plate model was built and a discretization of the modeling domain was carried out. Then, a heat conduction equation and boundary conditions were determined. Finally, the heat flux was calculated. The new numerical tool provided results similar to those for DFLUX;this is important for future work on related physical processes and heat flux control.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2010GB100009 and 2011GB110004)
文摘In order to transfer the heat from the armor to the coolant, tungsten has to be connected with a copper heat sink. The joint technology is the most critical issue for manufacturing plasma facing components. Consequently, the reliability of the joints should be verified by a great number of high-heat-flux (HHF) tests to simulate the real load conditions. W/Cu brazed joint technology with sliver free filler metal CuMnNi has been developed at Southwestern Institute of Physics (SWIP). Screening and thermal fatigue tests of one small-scale fiat tile W/CuCrZr mockup were performed on a 60 kW electron-beam Material testing scenario (EMS-60) constructed recently at SWIP. The module successfully survived screening test with the absorbed power density (Pabs) of 2 MW/m2 to 10 MW/m2 and the following 1000 cycles at Pabs of 7.2 MW/m2 without hot spots and overheating zones during the whole test campaign. Metallurgy and SEM observations did not find any cracks at both sides and the interface, indicating a good bonding of W and CuCrZr alloy. In addition, finite element simulations by ANSYS 12.0 under experimental load conditions were performed and compared with experimental results.
文摘A dynamic box model was applied to study the characteristics of biogeochemical cycling of PO<sub>4</sub>-P,NO<sub>3</sub>-N,AOU,POC and PON in the southern Taiwan Strait region based on field data of the"Minnan Taiwan Bank Fishing Ground Upwelling Ecosystem Study" during the period of Dec.1987-Nov.1988.According to the unique hydrological and topographical features of the region,six boxesand three layers were considered in the model.The variation rates and fluxes of elements induced by hor-izontal current,upwelling,by diffusion,sinking of particles and biogeochemical processes were estimatedrespectively.Results further confirmed that upwellings had important effects in this region.Thenearshore upwelling areas had net input fluxes of nutrients brought by upwelling water,also had high de-pletion rates of nutrients and production rates of particulate organic matter and dissolved oxygen.Theabnormal net production of nutrients in the middle layer(10-30m) indicated the important role of bacte-ria in this high production region.
基金This work was sponsored by the National Natural Science Foundation of China (Grant No.50001006).
文摘The magnetic field distribution characteristics of surface cracks with various widths are discussed based on finite element (FEM) results. The crack depth was 0.20 mm, the width range was from 0.02 to 1.00 mm. The results showed that crack width and lift-off (the distance between surface and sensor) will influence signals. Discussed in this paper is the influence of various lift-off parameters on the peak to peak values of the normal component in magnetic flux leakage testing. The effects can be applied to evaluate surface breaking cracks of different widths and depths. An idea is presented to smooth narrow, sharp crack tips using alternating current (AC) field magnetization.
基金Supported by the Science and Technology Commission of Shanghai Municipality under Grant No.12ZR1436500the Knowledge Innovation Programm of the Chinese Academy of Sciences
文摘A novel high-frequency and high power density planar insulated core transformer(PICT) applied to high voltage DC generator is introduced. PICT's operating principle and fundamental configuration are described,and preliminary experimental results in self-designed PICT apparatus are presented. Emphatically, magnetic leakage flux(MFL) giving rise to the output voltage drop is analyzed in detail both theoretically and by finite element method(FEM). Showing good consistency with experimental result, FEM simulation is considered to be practicable in physical design of PICT. To cancel out leakage inductance and improve the voltage uniformity,compensation capacitor is adopted and experimental verification is also presented. All shows satisfactory results.
基金National Natural Science Foundation of China(No.51207072)
文摘The static characteristics of an axial-flux permanentmagnet( AFPM) machine with coreless stator were investigated.Two-dimensional analytical method for prediction of the no-load magnetic field in the AFPM machine with coreless stator was derived. Electromotive force( EMF) and axial attraction force were deduced from the analytical method. These values obtained from analytical method were compared with those from finite element method( FEM) and agree well. Finally,a prototype was built for experimental validation and back EMF was measured. The results confirmed the validity of the proposed analytical method.
文摘Neutron activation analysis technique of the Gd2O2S:М scintillation ceramics was developed. The concentrations of 15 trace, minor and major elements (As, Ce, Co, Cr, Cs, Eu, Fe, La, Sc, Tb, Zn, Zr, Pr, Gd, Na) have been measured with the instrumental neutron activation analysis of the Gd2O2S:Pr sample. The concentrations range of the determined elements is from 3 × 10-8 to 2.0% in mass. The determination limit of the elements was calculated to be (0.6 - 1.3 × 10-8% in mass).
文摘Two hundred and seven rain events from April to October 2012 were collected in Carmen Island, Campeche, Mexico, and the concentration of 8 major ions with the pH of the rainwater was analyzed. Chemical composition variations as a result of seasonal patterns, meteorological conditions, and mixed local and regional sources contribution were assessed. In spite of the fact that nitrate and sulfate levels were higher than background hemispheric values, the average pH values were almost neutral. Carmen Island was under the influence of both, local and long-range transported emissions. Chemical composition showed a dilution effect as a result of the monthly rainfall amount. Ca2+ and Na+ were the most abundant ions, and these ions acted as acid neutralizers and buffered the acidity of the rain, suggesting that marine and crustal aerosols played an important role in the acid-base interactions. Wet deposition fluxes obtained were compared with reference values proposed as critical loads, fluxes obtained in this study did not exceed the critical values reported for sensitive ecosystems in Europe, indicating that this site has yet enough capacity to support acidity, nitrogen and sulfur deposition. However, it is necessary to obtain reference values characteristics for tropical regions.
文摘The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.