A novel mechanical variable-leakage-flux interior permanent magnet machine(MVLF-IPMM)is proposed for electric vehicles(EVs)in this paper,which employs a mechanical flux-regulating device and auxiliary rotatable magnet...A novel mechanical variable-leakage-flux interior permanent magnet machine(MVLF-IPMM)is proposed for electric vehicles(EVs)in this paper,which employs a mechanical flux-regulating device and auxiliary rotatable magnetic poles.The magnetic poles acting as the flux adjustors can be rotated by the additional device to vary the leakage flux in magnetic circuit and realize the adjustment of the PM flux linkage.Due to the flux-regulating effect,the flux distribution in this machine is complex and changeable.Therefore,the working principle is illustrated in detail.To obtain the perfect coordination between the dominant magnetic poles and auxiliary magnetic poles,a multi-objective optimization method is presented based on the parameter sensitivity analysis combining with the Coefficient of Prognosis(CoP).Then,some design parameters with strong sensitive are selected by the sensitivity analysis and the initial model of the proposed motor is optimized by utilizing the multi-objective genetic algorithm(MOGA).According to the result of the optimization,the machine performances of the initial and the optimal design under the different flux states are compared and analyzed to verify the validity of the new variable-flux motor and the optimization method.展开更多
Achieving a highly robust zinc(Zn)metal anode is extremely important for improving the performance of aqueous Zn-ion batteries(AZIBs)for advancing“carbon neutrality”society,which is hampered by the uncontrollable gr...Achieving a highly robust zinc(Zn)metal anode is extremely important for improving the performance of aqueous Zn-ion batteries(AZIBs)for advancing“carbon neutrality”society,which is hampered by the uncontrollable growth of Zn dendrite and severe side reactions including hydrogen evolution reaction,corrosion,and passivation,etc.Herein,an interlayer containing fluorinated zincophilic covalent organic framework with sulfonic acid groups(COF-S-F)is developed on Zn metal(Zn@COF-S-F)as the artificial solid electrolyte interface(SEI).Sulfonic acid group(-SO_(3)H)in COF-S-F can effectively ameliorate the desolvation process of hydrated Zn ions,and the three-dimensional channel with fluoride group(-F)can provide interconnected channels for the favorable transport of Zn ions with ion-confinement effects,endowing Zn@COF-S-F with dendrite-free morphology and suppressed side reactions.Consequently,Zn@COF-S-F symmetric cell can stably cycle for 1,000 h with low average hysteresis voltage(50.5 m V)at the current density of 1.5 m A cm^(-2).Zn@COF-S-F|Mn O_(2)cell delivers the discharge specific capacity of 206.8 m Ah g^(-1)at the current density of 1.2 A g^(-1)after 800 cycles with high-capacity retention(87.9%).Enlightening,building artificial SEI on metallic Zn surface with targeted design has been proved as the effective strategy to foster the practical application of high-performance AZIBs.展开更多
Uncontrolled lithium dendrite growth hinders the practical application of lithium metal batteries(LMBs).Herein,we report a novel Li^(+) flux distributor achieved by placing an electroactive polyvinylidene fluoride/pol...Uncontrolled lithium dendrite growth hinders the practical application of lithium metal batteries(LMBs).Herein,we report a novel Li^(+) flux distributor achieved by placing an electroactive polyvinylidene fluoride/polymethyl methacrylate(PVDF/PMMA)composite nanofiber interlayer on a current collector,inducing uniform lithium deposition to mitigate the dendrite problem.Specifically,the released PMMA reacts with Liþto form abundant C–O–Li bonds and generate in situ a stable lithiophilic PMMA-Li solid electrolyte interphase layer.Theoretical calculations reveal that polar C–F groups in the PVDF framework and lithiophilic PMMA-Li provide homo-dispersed Li^(+) migration pathways with low energy barriers.Consequently,uniform Li nucleation is achieved at the molecular level,resulting in ultrahigh cycling stability with dendrite-free Li deposition at 5 mA cm^(-2) and 5 mAh cm^(-2)for over 500 h.The PVDF/PMMA||Li||LiFePO_(4)(LFP)full cell presents an increased rate capacity of 110 mAh g^(-1) at 10 C.In addition,a soft-package battery demonstrates a high energy density of 289 Wh kg^(-1).This work provides a facile design for stable lithium metal anodes to promote the practical use of LMBs and other alkali metal batteries.展开更多
基金the National Natural Science Foundation of China under grant no.51767009in part by the Plan Project of Jiangxi Province of P.R.China under grant no.GJJ160598 and 20181BAB206035in part by the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(JXUST)。
文摘A novel mechanical variable-leakage-flux interior permanent magnet machine(MVLF-IPMM)is proposed for electric vehicles(EVs)in this paper,which employs a mechanical flux-regulating device and auxiliary rotatable magnetic poles.The magnetic poles acting as the flux adjustors can be rotated by the additional device to vary the leakage flux in magnetic circuit and realize the adjustment of the PM flux linkage.Due to the flux-regulating effect,the flux distribution in this machine is complex and changeable.Therefore,the working principle is illustrated in detail.To obtain the perfect coordination between the dominant magnetic poles and auxiliary magnetic poles,a multi-objective optimization method is presented based on the parameter sensitivity analysis combining with the Coefficient of Prognosis(CoP).Then,some design parameters with strong sensitive are selected by the sensitivity analysis and the initial model of the proposed motor is optimized by utilizing the multi-objective genetic algorithm(MOGA).According to the result of the optimization,the machine performances of the initial and the optimal design under the different flux states are compared and analyzed to verify the validity of the new variable-flux motor and the optimization method.
基金financially supported by National Natural Science Foundation of China(Nos.51872090,51772097,52372252)Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)+1 种基金Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)Natural Science Foundation of Hebei Province(No.E2020209151)。
文摘Achieving a highly robust zinc(Zn)metal anode is extremely important for improving the performance of aqueous Zn-ion batteries(AZIBs)for advancing“carbon neutrality”society,which is hampered by the uncontrollable growth of Zn dendrite and severe side reactions including hydrogen evolution reaction,corrosion,and passivation,etc.Herein,an interlayer containing fluorinated zincophilic covalent organic framework with sulfonic acid groups(COF-S-F)is developed on Zn metal(Zn@COF-S-F)as the artificial solid electrolyte interface(SEI).Sulfonic acid group(-SO_(3)H)in COF-S-F can effectively ameliorate the desolvation process of hydrated Zn ions,and the three-dimensional channel with fluoride group(-F)can provide interconnected channels for the favorable transport of Zn ions with ion-confinement effects,endowing Zn@COF-S-F with dendrite-free morphology and suppressed side reactions.Consequently,Zn@COF-S-F symmetric cell can stably cycle for 1,000 h with low average hysteresis voltage(50.5 m V)at the current density of 1.5 m A cm^(-2).Zn@COF-S-F|Mn O_(2)cell delivers the discharge specific capacity of 206.8 m Ah g^(-1)at the current density of 1.2 A g^(-1)after 800 cycles with high-capacity retention(87.9%).Enlightening,building artificial SEI on metallic Zn surface with targeted design has been proved as the effective strategy to foster the practical application of high-performance AZIBs.
基金support from the National Natural Science Foundation of China(22075042)the Natural Science Foundation of Shanghai(20ZR1401400)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Donghua University(DHU)Distinguished Young Professor Program(LZB2021002).
文摘Uncontrolled lithium dendrite growth hinders the practical application of lithium metal batteries(LMBs).Herein,we report a novel Li^(+) flux distributor achieved by placing an electroactive polyvinylidene fluoride/polymethyl methacrylate(PVDF/PMMA)composite nanofiber interlayer on a current collector,inducing uniform lithium deposition to mitigate the dendrite problem.Specifically,the released PMMA reacts with Liþto form abundant C–O–Li bonds and generate in situ a stable lithiophilic PMMA-Li solid electrolyte interphase layer.Theoretical calculations reveal that polar C–F groups in the PVDF framework and lithiophilic PMMA-Li provide homo-dispersed Li^(+) migration pathways with low energy barriers.Consequently,uniform Li nucleation is achieved at the molecular level,resulting in ultrahigh cycling stability with dendrite-free Li deposition at 5 mA cm^(-2) and 5 mAh cm^(-2)for over 500 h.The PVDF/PMMA||Li||LiFePO_(4)(LFP)full cell presents an increased rate capacity of 110 mAh g^(-1) at 10 C.In addition,a soft-package battery demonstrates a high energy density of 289 Wh kg^(-1).This work provides a facile design for stable lithium metal anodes to promote the practical use of LMBs and other alkali metal batteries.