Modified refractivity (M) profile is an important parameter to describe the atmospheric refraction environment,as well as a key factor in uniquely evaluating electromagnetic propagation effects.In order to improve the...Modified refractivity (M) profile is an important parameter to describe the atmospheric refraction environment,as well as a key factor in uniquely evaluating electromagnetic propagation effects.In order to improve the model-derived M profile in stable (especially very stable) conditions,three nonlinear similarity functions,namely BH91,CB05,SHEBA07,are introduced in this paper to improve the original Babin_V25 model,and the performances of these modified models are verified based on the hydrometeorological observations from tower platforms,which are finally compared with the original Babin_V25 model and Local_HYQ92 model.Results show that introducing nonlinear similarity functions can significantly improve the model-derived M profile;especially,the newly developed SHEBA07 functions manage to reduce the predicted root mean square (rms) differences of M and M slope (for both 0-5m and 5-40m) by 64.5%,16.6%,and 60.4%,respectively in stable conditions.Unfortunately,this improved method reacts little on the evaporation duct height;in contrast,Local_HYQ92 model is capable of reducing the predicted rms differences of M,M slope (for both 0-5m and 5-40m),and evaporation duct height by 76.7%,40.2%,83.7%,and 58.0% respectively.Finally,a new recommendation is made to apply Local_HYQ92 and Babin_SHEBA07 in very stable conditions considering that M slope is more important than evaporation duct height and absolute M value in uniquely determining electromagnetic propagation effects.展开更多
Dew is an important source of water which significantly influences the physiological status of vegetation and the microclimate environment. For quantifying the characteristics of dew events and analyzing the underlyin...Dew is an important source of water which significantly influences the physiological status of vegetation and the microclimate environment. For quantifying the characteristics of dew events and analyzing the underlying mechanism of dew formation in different ecosystems, we measured, based on the flux-profile method, the amount, frequency and duration of dew events in two croplands, an arid artificial oasis cropland in Zhangye, Gansu province and a sub-humid cropland in Luancheng, Hebei province in China. The results showed that dew events were observed in a total of 69 days in Zhangye, which accounted for 59% of the growing season(from 28 May to 21 September, 2012), while 128 days in Luancheng, which accounted for 79% of the growing season(from 5 April to 13 September, 2008). The frequencies of dew events were 2.8 and 2.4 times of those of precipitation in Zhangye and Luancheng, respectively. In addition, the dew amount reached up to 9.9 and 20.2 mm in Zhangye and Luancheng, which accounted for 9.5% and 4.1% of precipitation, respectively. The average amount of dew was 0.14 and 0.16 mm/night in Zhangye and Luancheng, respectively and the duration of dew events ranged from 0.5 to 12.0 h in the two study sites. Dew amounts were associated with the gradient of atmospheric water vapor concentration and dew duration(P<0.001) in both the two sites. The result implies that dew events play a more important role in crop growth in arid areas in comparison to sub-humid areas considering the dew occurrence frequency and the amount per night.展开更多
A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to...A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to the product of the square root of the total accumulated heating in the boundary layer and the sinusoidal function of the slope angle, while the temperature scale is proportional to the product of the boundary layer depth, the sinusoidal function of the slope angle and the potential temperature gradient in the free atmosphere. Using the new friction velocity parameterization, together with a parameterization of eddy diffusivity and an initial potential temperature profile around sunrise, an improved parameterization for the thermally induced upslope flow profile is derived by solving the Prandtl equations. The upslope flow profile is found to be simply proportional to the friction velocity.展开更多
Based on the Coupled Ocean-Atmospheric Response Experiment (COARE) bulk algorithm and the Naval Postgraduate School (NPS) model, a universal evaporation duct (UED) model that can flexibly accommodate the latest ...Based on the Coupled Ocean-Atmospheric Response Experiment (COARE) bulk algorithm and the Naval Postgraduate School (NPS) model, a universal evaporation duct (UED) model that can flexibly accommodate the latest improvements in component (such as stability function, velocity roughness, and scalar roughness) schemes for different stratification and wind conditions, is proposed in this paper. With the UED model, the sensitivity of the model-derived evaporation duct height (EDH) to stability function (ψ), ocean wave effect under moderate to high wind speeds, and scalar roughness length parameterization, is investigated, and relative contributions of these factors are compared. The results show that the stability function is a key factor influencing the simulated EDH values. Under unstable conditions, the EDH values from stability functions of Fairall et al. (1996) and Hu and Zhang (1992) are generally higher than those from others; while under stable conditions, unreasonably high EDHs can be avoided by use of the stability functions of Hu and Zhang (1992) and Grachev et al. (2007). Under moderate to high wind speeds, the increase in velocity roughness length z0 due to consideration of the true ocean wave effect acts to reduce modeled EDH values; this trend is more pronounced under stable conditions. Although the scalar roughness length parameterization has a minor effect on the model-derived EDH, a positive correlation is found between the scalar roughness length z0q and the model-derived EDH.展开更多
基金Key project of the National Natural Science Foundation of China(4083095841005029)the "973" National Basis Research and Development Program of China (2009CB421502)
文摘Modified refractivity (M) profile is an important parameter to describe the atmospheric refraction environment,as well as a key factor in uniquely evaluating electromagnetic propagation effects.In order to improve the model-derived M profile in stable (especially very stable) conditions,three nonlinear similarity functions,namely BH91,CB05,SHEBA07,are introduced in this paper to improve the original Babin_V25 model,and the performances of these modified models are verified based on the hydrometeorological observations from tower platforms,which are finally compared with the original Babin_V25 model and Local_HYQ92 model.Results show that introducing nonlinear similarity functions can significantly improve the model-derived M profile;especially,the newly developed SHEBA07 functions manage to reduce the predicted root mean square (rms) differences of M and M slope (for both 0-5m and 5-40m) by 64.5%,16.6%,and 60.4%,respectively in stable conditions.Unfortunately,this improved method reacts little on the evaporation duct height;in contrast,Local_HYQ92 model is capable of reducing the predicted rms differences of M,M slope (for both 0-5m and 5-40m),and evaporation duct height by 76.7%,40.2%,83.7%,and 58.0% respectively.Finally,a new recommendation is made to apply Local_HYQ92 and Babin_SHEBA07 in very stable conditions considering that M slope is more important than evaporation duct height and absolute M value in uniquely determining electromagnetic propagation effects.
基金supported by the National Natural Science Foundation of China (91125002)the Strategic Priority Research Program of Chinese Academy of Sciences (XDA05050601)
文摘Dew is an important source of water which significantly influences the physiological status of vegetation and the microclimate environment. For quantifying the characteristics of dew events and analyzing the underlying mechanism of dew formation in different ecosystems, we measured, based on the flux-profile method, the amount, frequency and duration of dew events in two croplands, an arid artificial oasis cropland in Zhangye, Gansu province and a sub-humid cropland in Luancheng, Hebei province in China. The results showed that dew events were observed in a total of 69 days in Zhangye, which accounted for 59% of the growing season(from 28 May to 21 September, 2012), while 128 days in Luancheng, which accounted for 79% of the growing season(from 5 April to 13 September, 2008). The frequencies of dew events were 2.8 and 2.4 times of those of precipitation in Zhangye and Luancheng, respectively. In addition, the dew amount reached up to 9.9 and 20.2 mm in Zhangye and Luancheng, which accounted for 9.5% and 4.1% of precipitation, respectively. The average amount of dew was 0.14 and 0.16 mm/night in Zhangye and Luancheng, respectively and the duration of dew events ranged from 0.5 to 12.0 h in the two study sites. Dew amounts were associated with the gradient of atmospheric water vapor concentration and dew duration(P<0.001) in both the two sites. The result implies that dew events play a more important role in crop growth in arid areas in comparison to sub-humid areas considering the dew occurrence frequency and the amount per night.
基金supported by the National Natural Science Foundation of China(Grant No. 40233032)Ministry of Science and Tech-nology (Grant No. 2006BAB18B03 and Grant No.2006BAB18B05)Office of Naval Research (Grant No.N0001409WR20177)
文摘A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to the product of the square root of the total accumulated heating in the boundary layer and the sinusoidal function of the slope angle, while the temperature scale is proportional to the product of the boundary layer depth, the sinusoidal function of the slope angle and the potential temperature gradient in the free atmosphere. Using the new friction velocity parameterization, together with a parameterization of eddy diffusivity and an initial potential temperature profile around sunrise, an improved parameterization for the thermally induced upslope flow profile is derived by solving the Prandtl equations. The upslope flow profile is found to be simply proportional to the friction velocity.
基金Supported by the National Natural Science Foundation of China(41205004,41230421,and 41105065)China Meteorological Administration Special Public Welfare Research Fund(GYHY201106004)
文摘Based on the Coupled Ocean-Atmospheric Response Experiment (COARE) bulk algorithm and the Naval Postgraduate School (NPS) model, a universal evaporation duct (UED) model that can flexibly accommodate the latest improvements in component (such as stability function, velocity roughness, and scalar roughness) schemes for different stratification and wind conditions, is proposed in this paper. With the UED model, the sensitivity of the model-derived evaporation duct height (EDH) to stability function (ψ), ocean wave effect under moderate to high wind speeds, and scalar roughness length parameterization, is investigated, and relative contributions of these factors are compared. The results show that the stability function is a key factor influencing the simulated EDH values. Under unstable conditions, the EDH values from stability functions of Fairall et al. (1996) and Hu and Zhang (1992) are generally higher than those from others; while under stable conditions, unreasonably high EDHs can be avoided by use of the stability functions of Hu and Zhang (1992) and Grachev et al. (2007). Under moderate to high wind speeds, the increase in velocity roughness length z0 due to consideration of the true ocean wave effect acts to reduce modeled EDH values; this trend is more pronounced under stable conditions. Although the scalar roughness length parameterization has a minor effect on the model-derived EDH, a positive correlation is found between the scalar roughness length z0q and the model-derived EDH.