The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash ...The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash by the composite chelating agent was the best,and the proportions of its easily leaching form in the two kinds of fly ash decreased from 29. 60% and 27. 49% to 3. 05% and 0. 29% respectively. The leaching toxicity of stabilized fly ash was lower than the limits of Standard for Pollution Control on the Landfill Site of Municipal Solid Waste( GB 16889- 2008),so it can be landfilled separately in the landfill site of municipal solid waste.展开更多
Soil amendment with fly ash(FA) and combined supplementation with N_2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and ...Soil amendment with fly ash(FA) and combined supplementation with N_2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and 10.0 kg/m2, caused increase in growth and yield of rice up to 8.0 kg/m2, monitored with several parameters. Pigment contents and enzyme activities of leaves were enhanced by FA, with the maximum level of FA at 10.0 kg/m2. Protein content of rice seeds was the highest in plants grown at FA level 4.0 kg/m2. Basic soil properties, p H value, percentage of silt, percentage of clay, water-holding capacity, electrical conductivity, cation exchange capacity, and organic carbon content increased due to the FA amendment. Parallel supplementation of FA amended plots with 1.0 kg/m2 N_2-fixing cyanobacteria mass caused further significant increments of the most soil properties, and rice growth and yield parameters. 1000-grain weight of rice plants grown at FA level 4.0 kg/m2 along with cyanobacteria supplementation was the maximum. Cyanobacteria supplementation caused increase of important basic properties of soil including the total N-content. Estimations of elemental content in soils and plant parts(root and seed) were done by the atomic absorption spectrophotometry. Accumulations of K, P, Fe and several plant micronutrients(Mn, Ni, Co, Zn and Cu) and toxic elements(Pb, Cr and Cd) increased in soils and plant parts as a function of the FA gradation, but Na content remained almost unchanged in soils and seeds. Supplementation of cyanobacteria had ameliorating effect on toxic metal contents of soils and plant parts. The FA level 4.0 kg/m2, with 1.0 kg/m2 cyanobacteria mass supplementation, could be taken ideal, since there would be recharging of the soil with essential micronutrients as well as toxic chemicals in comparative lesser proportions, and cyanobacteria mass would cause lessening toxic metal loads with usual N_2-fixation.展开更多
基金Supported by the Project of Shangai State-owned Assets Supervision and Administration Commission(2013019)Project of Shanghai Science and Technology Commission(13231201901)+1 种基金Innovation Foundation of Shanghai Science and Technology Commission(11231200200)Special Project for Zhangjiang High-tech Park in Shanghai(201505-HP-C104-005)
文摘The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash by the composite chelating agent was the best,and the proportions of its easily leaching form in the two kinds of fly ash decreased from 29. 60% and 27. 49% to 3. 05% and 0. 29% respectively. The leaching toxicity of stabilized fly ash was lower than the limits of Standard for Pollution Control on the Landfill Site of Municipal Solid Waste( GB 16889- 2008),so it can be landfilled separately in the landfill site of municipal solid waste.
基金supported by the project from Council of Scientific and Industrial Research,New Delhi,India (Grant No.21 (0859)/11/EMR-Ⅱ)
文摘Soil amendment with fly ash(FA) and combined supplementation with N_2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and 10.0 kg/m2, caused increase in growth and yield of rice up to 8.0 kg/m2, monitored with several parameters. Pigment contents and enzyme activities of leaves were enhanced by FA, with the maximum level of FA at 10.0 kg/m2. Protein content of rice seeds was the highest in plants grown at FA level 4.0 kg/m2. Basic soil properties, p H value, percentage of silt, percentage of clay, water-holding capacity, electrical conductivity, cation exchange capacity, and organic carbon content increased due to the FA amendment. Parallel supplementation of FA amended plots with 1.0 kg/m2 N_2-fixing cyanobacteria mass caused further significant increments of the most soil properties, and rice growth and yield parameters. 1000-grain weight of rice plants grown at FA level 4.0 kg/m2 along with cyanobacteria supplementation was the maximum. Cyanobacteria supplementation caused increase of important basic properties of soil including the total N-content. Estimations of elemental content in soils and plant parts(root and seed) were done by the atomic absorption spectrophotometry. Accumulations of K, P, Fe and several plant micronutrients(Mn, Ni, Co, Zn and Cu) and toxic elements(Pb, Cr and Cd) increased in soils and plant parts as a function of the FA gradation, but Na content remained almost unchanged in soils and seeds. Supplementation of cyanobacteria had ameliorating effect on toxic metal contents of soils and plant parts. The FA level 4.0 kg/m2, with 1.0 kg/m2 cyanobacteria mass supplementation, could be taken ideal, since there would be recharging of the soil with essential micronutrients as well as toxic chemicals in comparative lesser proportions, and cyanobacteria mass would cause lessening toxic metal loads with usual N_2-fixation.