To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 4...To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 400 kg/m3 were tested. Ground granulated blast-furnace slag (GGBS) as a source material was activated by the following two types of alkali activators: 10% Ca(OH)2 and 4% Mg(NO3)2, and 2.5% Ca(OH)2 and 6.5% Na2SiO3. The main test parameters were water-to-binder (W/B) ratio and the substitution level (RFA) of fly ash (FA) for GGBS. Test results revealed that the dry density of AA GGBS foamed concrete was independent of the W/B ratio an RFA, whereas the compressive strength increased with the decrease in W/B ratio and with the increase in RFA up to 15%, beyond which it decreased. With the increase in the W/B ratio, the amount of macro capillaries and artificial air pores increased, which resulted in the decrease of compressive strength. The magnitude of the environmental loads of the AA GGBS foamed concrete is independent of the W/B ratio and RFA. The largest reduction percentage was found in the photochemical oxidation potential, being more than 99%. The reduction percentage was 87% - 93% for the global warming potential, 81% - 84% for abiotic depletion, 79% - 84% for acidification potential, 77% - 85% for eutrophication potential, and 73% - 83% for human toxicity potential. Ultimately, this study proved that the developed AA GGBS foamed concrete has a considerable promise as a sustainable construction material for nonstructural element.展开更多
The activities of municipal solid waste incineration (MSWI) fly ash and incineration residues were studied contrastively, through the component analysis and the activity ratio tests. The mechanical properties, hydra...The activities of municipal solid waste incineration (MSWI) fly ash and incineration residues were studied contrastively, through the component analysis and the activity ratio tests. The mechanical properties, hydration mechanism and leaching toxicity of the hardened cement paste mixing with MSWI fly ash and incineration residues were investigated. The experimental results indicated that the active constituents (CaO+Al2O3+Fe2O3) in MSWI fly ash were higher than those in incineration residues. Therefore the activity ratio of MSWI fly ash was 43.58%, twice as much as that of incineration residues. Meanwhile, the hydration of cement was delayed by mixing with MSWI fly ash and incineration residues, which also reduced the cement strength markedly. By adding with exceeding 20% MSWI fly ash, the specimens expanded and microcracks appeared. The leaching toxicities of cement pasted mixed with MSWI fly ash and incineration residues were lower than the Chinese national standard. Accordingly the cement mixed by MSWI fly ash and incineration residues can be considered as the environment-friendly materials.展开更多
It is urgent to develop excellent solid CO<sub>2</sub> sorbents with higher sorption capacity, simpler synthetic process, better thermal stability and lower costs of synthesis in CO<sub>2</sub>...It is urgent to develop excellent solid CO<sub>2</sub> sorbents with higher sorption capacity, simpler synthetic process, better thermal stability and lower costs of synthesis in CO<sub>2</sub> capture and storage technologies. In this work, a number of Li<sub>4</sub>SiO<sub>4</sub>-based sorbents synthesized by lithium carbonate with three different kinds of fly ashes in various molar ratios were developed. The results indicate that the Li<sub>2</sub>CO<sub>3</sub>:SiO<sub>2</sub> mole ratio used in the sorbents synthesis significantly affects the CO<sub>2</sub> absorption properties. The sorption capacity increased with the excess of Li<sub>2</sub>CO<sub>3</sub> first and then decreased when the excessive quantity was beyond a certain amount. The experiments found that FA-Li<sub>4</sub>SiO<sub>4</sub>_0.6, CFA-Li<sub>4</sub>SiO<sub>4</sub>_0.4, HCl/CFA-Li<sub>4</sub>SiO<sub>4</sub>_0.3 presented the best sorption ability among these fly ash derived Li<sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">SiO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> samples, and the corresponding weight gain was 28.2 wt%, 25.1 wt% and 32.5 wt%, respectively. The three sorbents with the optimal molar ratio were characterized using various morphological </span><span style="font-family:Verdana;">characterization techniques and evaluated by thermogravimetric analysis </span><span style="font-family:Verdana;">for their capacity to chemisorb CO<sub>2</sub> at 450<sup></sup></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span></span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;"> - 650<sup></sup></span><span style="font-family:Verdana;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span></span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;">, diluted CO<sub>2</sub> (10%, 20%) and in presence of water vapor (12%). The adsorption curve of FA- Li<sub>4</sub>SiO<sub>4</sub>_0.6 at different temperatures was simulated with the Jander-Zhang model to explore the influence of carbon dioxide diffusion on adsorption reaction. Further experiments showed that the adsorbent had a good sorption capacity in a lower partial pressure of CO<sub>2</sub> and the presence of steam enhanced the mobility of Li<sup>+</sup>. What’s more, FA-Li<sub>4</sub>SiO<sub>4</sub>_0.6, CFA-Li<sub>4</sub>SiO<sub>4</sub>_0.4 and HCl/CFA-Li<sub>4</sub>SiO<sub>4</sub>_0.3 particles showed satisfactory sorption capacity in fixed-bed reactor and excellent cyclic sorption stability during 10 sorption/ desorption cycles.</span></span></span></span>展开更多
The physical and chemical properties and soundness of Baosteel Power Plant' s dry desulphurized fly ash were systematically investigated and compared with those of the similar byproducts produced by some other domest...The physical and chemical properties and soundness of Baosteel Power Plant' s dry desulphurized fly ash were systematically investigated and compared with those of the similar byproducts produced by some other domestic power plants. The feasibility of these byproducts used as a construction material was also analyzed. The results show that Baosteel's dry desulphurized fly ash is a kind of ash with high calcium and high sulfur contents, which has the characteristics of volcanic ash activity. It contains sulfate and sulfite, and is easy to cause sulfate activation. It has higher activity compared with common fly ash. But higher calcium sulfite and free-CaO contents in ash will bring about soundness concerns to users. Therefore, quality tests and volume control will be necessary when fly ash is used as a construction material.展开更多
Fly ash is a pozzolanic waste from the burning of coal ash in thermal power plant which will be unchangeable in India and increasing environmental pollution. There is an urgent need of increasing bulk utilization of f...Fly ash is a pozzolanic waste from the burning of coal ash in thermal power plant which will be unchangeable in India and increasing environmental pollution. There is an urgent need of increasing bulk utilization of fly ash in geotechnical application. In this regard, a study was undertaken to investigate the bearing capacity of fly ash slopes (β) with the strip footing of width (B) 0.1 m located at different edge distances (D<sub>e</sub> = 1B, 2B, 3B) from slope crest. These tests were conducted in the laboratory and the pressure-settlement behaviour of strip footing on unreinforced and reinforced fly ash slope having an angle of 45? was studied. The embedment ratio (Z/B = 0.30), and the depth of first layer of polyester geogrid reinforcement were investigated with different footing edge distances (D<sub>e</sub> = 1B, 2B, 3B). From the experiment, pressure and settlements were measured and subsequently, the pressure settlement curves were drawn. It is observed from test results that the load carrying capacity is found to increase with an edge distance in both cases: unreinforced and reinforced slope. Also, a substantial increase is observed in the bearing capacity with the addition of geogrid reinforcement. It is observed that, the bearing capacity ratio (BCR) decreases with edge distance increase. These investigations demonstrate that both, the ultimate bearing capacity and settlement characteristics of the foundation, can be improved due to the inclusion of reinforcements within the fill.展开更多
文摘To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 400 kg/m3 were tested. Ground granulated blast-furnace slag (GGBS) as a source material was activated by the following two types of alkali activators: 10% Ca(OH)2 and 4% Mg(NO3)2, and 2.5% Ca(OH)2 and 6.5% Na2SiO3. The main test parameters were water-to-binder (W/B) ratio and the substitution level (RFA) of fly ash (FA) for GGBS. Test results revealed that the dry density of AA GGBS foamed concrete was independent of the W/B ratio an RFA, whereas the compressive strength increased with the decrease in W/B ratio and with the increase in RFA up to 15%, beyond which it decreased. With the increase in the W/B ratio, the amount of macro capillaries and artificial air pores increased, which resulted in the decrease of compressive strength. The magnitude of the environmental loads of the AA GGBS foamed concrete is independent of the W/B ratio and RFA. The largest reduction percentage was found in the photochemical oxidation potential, being more than 99%. The reduction percentage was 87% - 93% for the global warming potential, 81% - 84% for abiotic depletion, 79% - 84% for acidification potential, 77% - 85% for eutrophication potential, and 73% - 83% for human toxicity potential. Ultimately, this study proved that the developed AA GGBS foamed concrete has a considerable promise as a sustainable construction material for nonstructural element.
基金Funded by the Major State Basic Research and Development Program ofChina ("973" Program) (No.2009CB623201)
文摘The activities of municipal solid waste incineration (MSWI) fly ash and incineration residues were studied contrastively, through the component analysis and the activity ratio tests. The mechanical properties, hydration mechanism and leaching toxicity of the hardened cement paste mixing with MSWI fly ash and incineration residues were investigated. The experimental results indicated that the active constituents (CaO+Al2O3+Fe2O3) in MSWI fly ash were higher than those in incineration residues. Therefore the activity ratio of MSWI fly ash was 43.58%, twice as much as that of incineration residues. Meanwhile, the hydration of cement was delayed by mixing with MSWI fly ash and incineration residues, which also reduced the cement strength markedly. By adding with exceeding 20% MSWI fly ash, the specimens expanded and microcracks appeared. The leaching toxicities of cement pasted mixed with MSWI fly ash and incineration residues were lower than the Chinese national standard. Accordingly the cement mixed by MSWI fly ash and incineration residues can be considered as the environment-friendly materials.
文摘It is urgent to develop excellent solid CO<sub>2</sub> sorbents with higher sorption capacity, simpler synthetic process, better thermal stability and lower costs of synthesis in CO<sub>2</sub> capture and storage technologies. In this work, a number of Li<sub>4</sub>SiO<sub>4</sub>-based sorbents synthesized by lithium carbonate with three different kinds of fly ashes in various molar ratios were developed. The results indicate that the Li<sub>2</sub>CO<sub>3</sub>:SiO<sub>2</sub> mole ratio used in the sorbents synthesis significantly affects the CO<sub>2</sub> absorption properties. The sorption capacity increased with the excess of Li<sub>2</sub>CO<sub>3</sub> first and then decreased when the excessive quantity was beyond a certain amount. The experiments found that FA-Li<sub>4</sub>SiO<sub>4</sub>_0.6, CFA-Li<sub>4</sub>SiO<sub>4</sub>_0.4, HCl/CFA-Li<sub>4</sub>SiO<sub>4</sub>_0.3 presented the best sorption ability among these fly ash derived Li<sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">SiO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> samples, and the corresponding weight gain was 28.2 wt%, 25.1 wt% and 32.5 wt%, respectively. The three sorbents with the optimal molar ratio were characterized using various morphological </span><span style="font-family:Verdana;">characterization techniques and evaluated by thermogravimetric analysis </span><span style="font-family:Verdana;">for their capacity to chemisorb CO<sub>2</sub> at 450<sup></sup></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span></span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;"> - 650<sup></sup></span><span style="font-family:Verdana;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span></span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;">, diluted CO<sub>2</sub> (10%, 20%) and in presence of water vapor (12%). The adsorption curve of FA- Li<sub>4</sub>SiO<sub>4</sub>_0.6 at different temperatures was simulated with the Jander-Zhang model to explore the influence of carbon dioxide diffusion on adsorption reaction. Further experiments showed that the adsorbent had a good sorption capacity in a lower partial pressure of CO<sub>2</sub> and the presence of steam enhanced the mobility of Li<sup>+</sup>. What’s more, FA-Li<sub>4</sub>SiO<sub>4</sub>_0.6, CFA-Li<sub>4</sub>SiO<sub>4</sub>_0.4 and HCl/CFA-Li<sub>4</sub>SiO<sub>4</sub>_0.3 particles showed satisfactory sorption capacity in fixed-bed reactor and excellent cyclic sorption stability during 10 sorption/ desorption cycles.</span></span></span></span>
文摘The physical and chemical properties and soundness of Baosteel Power Plant' s dry desulphurized fly ash were systematically investigated and compared with those of the similar byproducts produced by some other domestic power plants. The feasibility of these byproducts used as a construction material was also analyzed. The results show that Baosteel's dry desulphurized fly ash is a kind of ash with high calcium and high sulfur contents, which has the characteristics of volcanic ash activity. It contains sulfate and sulfite, and is easy to cause sulfate activation. It has higher activity compared with common fly ash. But higher calcium sulfite and free-CaO contents in ash will bring about soundness concerns to users. Therefore, quality tests and volume control will be necessary when fly ash is used as a construction material.
文摘Fly ash is a pozzolanic waste from the burning of coal ash in thermal power plant which will be unchangeable in India and increasing environmental pollution. There is an urgent need of increasing bulk utilization of fly ash in geotechnical application. In this regard, a study was undertaken to investigate the bearing capacity of fly ash slopes (β) with the strip footing of width (B) 0.1 m located at different edge distances (D<sub>e</sub> = 1B, 2B, 3B) from slope crest. These tests were conducted in the laboratory and the pressure-settlement behaviour of strip footing on unreinforced and reinforced fly ash slope having an angle of 45? was studied. The embedment ratio (Z/B = 0.30), and the depth of first layer of polyester geogrid reinforcement were investigated with different footing edge distances (D<sub>e</sub> = 1B, 2B, 3B). From the experiment, pressure and settlements were measured and subsequently, the pressure settlement curves were drawn. It is observed from test results that the load carrying capacity is found to increase with an edge distance in both cases: unreinforced and reinforced slope. Also, a substantial increase is observed in the bearing capacity with the addition of geogrid reinforcement. It is observed that, the bearing capacity ratio (BCR) decreases with edge distance increase. These investigations demonstrate that both, the ultimate bearing capacity and settlement characteristics of the foundation, can be improved due to the inclusion of reinforcements within the fill.